1 Riken Spring-8 Center,1-1-1 Kouto,Sayo,Sayo,YOOGO 679-5148,日本2日本2精确科学与技术系,大阪大学工程研究生院,2-1 Yamada-Oka,Osaka,Osaka,Osaka 565-0871,日本565-0871,日本3日本3 UniwersytetupoznaðSkiego2,PL-61614 POZNA或波兰4自由电子激光科学中心CFEL,DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY,NOTKERSTER,NOTKERSTER。85,22607德国汉堡5欧洲XFEL GMBH,HOLZKOPPEL 4,22869德国Schenefeld,德国6核物理研究所6,波兰科学院核物理学院,Radzikowskiego 152,152,152,31-342 KRAKOW,波兰克拉克夫,波兰7材料材料部7材料,材料部7材料部 Nagoya, 464-8603, Japan 8 Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan 9 Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
1物理系,米兰理工学院,莱昂纳多·达·芬奇(Piazza Leonardo da Vinci)32,I-20133米兰米兰,意大利大学2大学和斯特拉斯堡,CNR,IPCMS UMR 7504,F-67034,F-67034,F-67034欧洲STRASBORF,欧洲STRAS 302 Grenoble, France 4 European Xfel, Holzkoppel 4, Schenefeld, D-22869, Germany 5 Quantum Device Physics Laboratory, Department of MicroTechnology and Nanoscience, Chalmers University of Technology, Se-41296 GOOoteborg, Sweden 6 Department of Molecular Sciences and Nanosystems, Ca 'Foscari University of Venice, I-30172 Venice,意大利7 CNR-Spin,蒙特Sant'Angelo-Via Cintia Complex,I-80126那不勒斯,意大利8理论物理研究所,Jagiellonian University,UL。Lojasiewicza 11,PL-30348 Krak´Ow,波兰9 CNR旋转,米兰理工学院物理学系,I-20133 I-20133,意大利米兰(日期为2024年6月14日)
10:00 - 11:00 MOAPL - PROJECTUS 状态报告 1 4 全体会议会议室主席 4 Yingbing Yan (SSRF, CN) 和 John Maclean (ANL, US) 10:00 - 10:15 MOAPL01 - 欧洲 XFEL 线性加速器的控制系统:状态和初步经验。Tim Wilksen - Deutsches Elektronen-Synchrotron 10:15 - 10:30 MOAPL02 - MAX IV 实验室同步加速器设施的首次运行。Vincent Hardion - MAX IV 实验室隆德大学 10:30 - 10:45 MOAPL03 - 国家点火装置 (NIF) 集成计算机控制和信息系统的现状。Gordon Brunton - 劳伦斯利弗莫尔国家实验室国家点火设施计划理事会光子科学和应用计划。10:45 - 11:00 MOAPL04 - SwissFEL 控制系统 - 概述、状态和经验教训。Elke Zimoch - Paul Scherrer 研究所
10:00 - 11:00 MOAPL - PROJECTUS 状态报告 1 4 全体会议会议室主席 4 Yingbing Yan (SSRF, CN) 和 John Maclean (ANL, US) 10:00 - 10:15 MOAPL01 - 欧洲 XFEL 线性加速器的控制系统:状态和初步经验。Tim Wilksen - Deutsches Elektronen-Synchrotron 10:15 - 10:30 MOAPL02 - MAX IV 实验室同步加速器设施的首次运行。Vincent Hardion - MAX IV 实验室隆德大学 10:30 - 10:45 MOAPL03 - 国家点火装置 (NIF) 集成计算机控制和信息系统的现状。Gordon Brunton - 劳伦斯利弗莫尔国家实验室国家点火设施计划理事会光子科学和应用计划。10:45 - 11:00 MOAPL04 - SwissFEL 控制系统 - 概述、状态和经验教训。Elke Zimoch - Paul Scherrer 研究所
我们对超高强度激光辐照(∼ 10 20 W/cm 2 )下多层靶中的恒容加热进行了计算研究。先前的研究表明界面处的离子加热增强,但代价是温度梯度较大。在这里,我们研究多层靶,将这种增强的界面加热扩散到整个靶,并找到使温度分布比单个界面更均匀的加热参数,同时仍超过非分层靶的平均温度。此外,我们发现了一种压力振荡,它会导致各层在膨胀和压缩之间交替,对加热没有有益的影响。基于此,我们推导出一个估计振荡周期的分析模型,以找到优化加热和温度均匀性的目标条件。该模型还可用于从振荡周期推断等离子体温度,振荡周期可通过 XFEL 探测等方式测量。
下一代高亮度 X 射线光子源需要新的 X 射线光学器件。我们在此展示了在尖端高重复率 X 射线自由电子激光 (XFEL) 设备中使用单片金刚石通道切割晶体作为高热负荷光束复用窄带机械稳定 X 射线单色仪的可能性,该单色仪具有高功率 X 射线光束。这些研究中制造和表征的金刚石通道切割晶体设计为双反射布拉格反射单色仪,分别将 15 meV 带宽内的 14.4 或 12.4 keV X 射线引导至 57 Fe 或 45 Sc 核共振散射实验。晶体设计允许带外 X 射线以最小的损失传输到其他同时进行的实验中。入射的 100 W X 射线束中只有不到 2% 被 50 m 厚的第一块金刚石晶体反射器吸收,从而确保单色器晶体高度稳定。预计金刚石槽切割晶体将用于其他 X 射线光学应用。
摘要。LUXE 实验(LASER Und XFEL 实验)是 DESY Hamburg 正在规划的一项新实验,它将研究强场前沿的量子电动力学 (QED)。在这种状态下,QED 是非微扰的。这表现在从 QED 真空中创建物理电子-正电子对。LUXE 打算通过使用硅跟踪探测器等来测量这种前所未有的状态下的正电子产生率。大量预期的正电子穿过敏感的探测器层会导致极具挑战性的组合问题,这对于经典计算机来说在计算上会变得非常困难。本文提出了一项初步研究,以探索量子计算机解决此问题的潜力以及从探测器能量沉积中重建正电子轨迹。重建问题以二次无约束二进制优化的形式提出。最后,讨论了量子模拟的结果,并将其与传统的经典轨迹重建算法进行了比较。
X 射线自由电子激光器 (XFEL) 的光子束比第三代光源亮 10 个数量级,是科学应用中最亮的 X 射线源 1 – 4 。其独特的波长可调性、飞秒脉冲持续时间和出色的横向相干性被用于多个科学研究领域,包括原子、分子和光学物理、化学、生物、凝聚态物理和极端条件下的物质 5 。X 射线脉冲定制一直是一个非常活跃的研究领域,包括新型超短高功率模式 6、7,极化控制 8 – 10 和双色双脉冲 11 – 18 。双 X 射线脉冲被开发用于进行 X 射线泵/X 射线探测实验,其中由一个 X 射线脉冲引发的超快物理和化学动力学可以通过第二个超短 X 射线探测脉冲来探索。这种脉冲通常是用分裂波荡器11、16或双束流技术15产生的。在双束流模式下,脉冲之间的时间间隔限制在125 fs以内,而使用新鲜切片方案16通常会产生最大延迟约为1皮秒的双脉冲。然而,有些实验需要更长的时间间隔。例如,可以通过用第一个X射线脉冲触发取决于压力的过程,然后在几纳秒后用第二个X射线脉冲探测它们,来研究水滴的爆炸19。可以用延迟超过120纳秒的第二个脉冲来探测X射线在气体装置中引起的丝状效应20。在X射线探针/X射线探针类实验中,两个脉冲都不是用来驱动样品进入不同状态的,但两个X射线脉冲在散射后可以进行有效比较,并用于在明确定义的时间间隔内提取信息。例如,从记录的散斑图案研究了磁性 skyrmion 的平衡波动,这些散斑图案是纳秒范围内两个衰减 x 射线脉冲之间的时间延迟的函数 21 – 25。最近,随着 LCLS 基于 x 射线腔的系统的出现,双脉冲和多脉冲模式传输变得至关重要 26、27。基于腔的 XFEL(CBXFEL)项目目前依赖于 220 ns 双脉冲模式,而 x 射线激光振荡器 (XLO) 28 将使用最多 8 个脉冲串,间隔为 35 ns。许多极端条件下的物质 (MEC) 实验也需要最多 8 个 x 射线脉冲,间隔 ≤ 1 ns,现在可以传输 29 – 31。在本文中,我们完整描述了一种新型双桶方案,该方案在 LCLS-I 和 LCLS-II 波荡器上使用铜直线加速器 32 – 34 运行。我们使用在不同射频 (RF) 桶中加速的两个电子束将 x 射线脉冲延迟范围扩展到 1 ps 以上。使用现有的 S 波段加速结构,工作频率为 2.856 GHz,可用的最小时间延迟为 ∼ 350 ps,对应于单个桶分离。延迟可以按整数桶数进行控制,也可以按 350 ps 的步长控制,最高可达数百纳秒。基于超导加速器技术的现有和计划中的高重复率 FEL 机器将产生重复率为 MHz 量级的光子束串,因此 XFEL 脉冲之间的最小距离比使用所提出的方案可实现的距离长得多。FERMI 展示了一种类似的技术,可以产生最大分离为 ∼ 2.5 ns 的双电子束。然而,激光过程仅限于极紫外波长。
14个国际会议的组织者 - 例如,2000年物理学和化学学院的Actinid ES和JournéesDesActinides实习生。会议,100名参与者,德累斯顿,德国,2011年2011年功能性金属制剂 - 磁性,结构,运输研讨会,有70名参与者,Uppsala,瑞典2013 2013年功能性金属有机体和混合动力系统研讨会,有60名参与者,有60名参与者,印度Kolkata,印度Kolkata,印度2013年的超级订单,超级能力与URU 2参与者的un undoctions in Uru 2 si 2 Workshopters:50每年大约有9次邀请会谈。国际会议/学校的代表性演讲 - 例如:理论上的邀请谈话会见XFEL研讨会,德国汉堡(2022)(2022)在超快磁性会议(UMC)邀请全体谈话,法国南希(2022)(2022)邀请全体会议模型和小immicromagagnetism(Hmmagnetism)(HMM2011)(HMM2017)会议超快动态,卢卡,意大利(2016)给定的物理教育课程的贡献:密度功能理论的实际主题(1995),量子力学I - 运动课程(1997年),金属光学特性理论(1998),磁光谱镜,磁光谱(2002),量子力学(2004年),量子力学 - 锻炼方式(2004),同步(2004),同步(2004),同时(2004),RROCKIIL(2004),RROCTROR(2004),RROSCOP(2004),RROSCOPIES(2004),RROSCOPIES(2004),RROSCOPIES(2004),RROSCOPIS(2004),RROSCOPIES(2004),RROSCOPIES(2004),RROSCOPIES(2004),RROSCOPIES(2004) 2009年),《高级材料光学》(2006年),量子物理学(2006 - 2019),运动课程量子物理学(2006 - 2019),量子物理F(2020 - 2023)。信任委员会:§硕士学生:Thomas Maurer(1990-1991),Wolfgang Hierse(1991-1992),
这也使得直接在原子水平上研究酶反应的整个过程成为可能,为酶学的新领域打开了大门。这将是根据反应中间体的结构(即酶的真实活性状态)合理设计催化剂和药物的第一步。 出版信息 标题:在原子分辨率下可视化光裂解酶的 DNA 修复过程 作者:Manuel Maestre-Reyna*、Po-Hsun Wang、Eriko Nango、Yuhei Hosokawa、Martin Saft、Antonia Furrer、Cheng-Han Yang、Eka Putra Gusti Ngurah Putu、Wen-Jin Wu、Hans-Joachim Emmerich、Nicolas Caramello、Sophie Franz-Badur、Chao Yang、Sylvain Engilberge、Maximilian Wranik、Hannah Louise Glover、Tobias Weinert、Hsiang-Yi Wu、Cheng-Chung Lee、Wei-Cheng Huang、Kai-Fa Huang、Yao-Kai Chang、Jianh-Haur Liao、Jui-Hung Weng、Wael Gad、Chiung-Wen Chang、Allan H. Pang、Kai-Chun Yang、Wei-Ting Lin、 Yu-Chen Chang、Dardan Gashi、Emma Beale、Dmitry Ozerov、Karol Nass、Gregor Knopp、Philip JM Johnson、Claudio Cirelli、Chris Milne、Camila Bacellar、Michihiro Sugahara、Shigeki Owada、Yasumasa Joti、Ayumi Yamashita、Rie Tanaka、Tomoyuki Tanaka、Fangjia Luo、Kensuke Tono、Wiktoria Zarzycka、Pavel Müller、Maisa Alkheder Alahmad、Filipp Bezold、Valerie Fuchs、Petra Gnau、Stephan Kiontke、Lukas Korf、Viktoria Reithofer、Christian Joshua Rosner、Elisa Marie Seiler、Mohamed Watad、Laura Werel、Roberta Spadaccini、Junpei Yamamoto、So Iwata、Dongping Zhong、Joerg Standfuss、Antoine Royant、Yoshitaka Bessho*, Lars-Oliver Essen*, Ming-Daw Tsai* <杂志> Science < DOI > 10.1126/science.add7795 补充信息 [1] X射线自由电子激光器(XFEL)