血清电泳(SPEP)是一种用于分析血液中最重要蛋白质的分布的方法。主要的临床问题是存在抗体(M蛋白/副蛋白)的单克隆分数,这对于诊断和下血液学疾病(例如多发性骨髓瘤)至关重要。最近的研究表明,可以通过例如检查蛋白质聚糖模式来跟踪肿瘤手术,可以使用机器学习来评估蛋白质电泳。在这项研究中,我们比较了26种不同的决策树算法,通过使用来自血清蛋白质毛细血管电泳的数值数据,以鉴定人血清中M蛋白的存在。对于数据的自动检测和聚类,我们使用了一个由67,073个样本组成的匿名数据集。我们发现了五种具有较高能力检测M蛋白质的方法:额外的树(ET),随机拟合(RF),直方机分级增强回收期(HGBR),轻梯度增强方法(LGBM)和极端梯度增强(XGB)。此外,我们实施了一种游戏方法来披露数据集中的哪些功能,这些功能表明了由此产生的M蛋白诊断。结果验证了伽马球蛋白的馏分和β球蛋白分数的一部分是电泳分析的最重要特征,从而增强了我们方法的可靠性。最后,我们测试了分类的M蛋白质同种型的算法,其中ET和XGB在测试的五种算法中表现出最佳性能。我们的结果表明,血清毛细管电泳与决策树算法相结合,在应用M蛋白的快速,准确鉴定方面具有巨大的潜力。此外,这些方法将适用于各种血液分析,例如血红蛋白病,表明诊断范围广泛。但是,对于M蛋白质同种型分类,将机器学习解决方案与毛细血管电泳的数值数据与凝胶电泳图像数据相结合是最有利的。
孔隙压力是钻孔设计中的重要数据,其准确的预测对于确保钻孔安全性和提高钻井效率是必要的。在形成特定的结构和岩性时,预测孔隙压力的传统方法受到限制。在本文中,使用机器学习算法和有效应力定理来建立岩石物理参数和孔隙压力之间的转换模型。本研究收集了三口井的数据。Well 1有881个用于模型训练的数据集,Wells 2和3具有538和464个数据集用于模型测试。在本文中,选择了支持向量机(SVM),随机森林(RF),极端梯度提升(XGB)和多层感知器(MLP)作为孔隙压力建模的机器学习算法。In addition, this paper uses the grey wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, sparrow search algorithm (SSA), and bat algorithm (BA) to establish a hybrid machine learning optimization al- gorithm, and proposes an improved grey wolf optimization (IGWO) algorithm.IgWO-MLP模型通过使用5倍的交叉验证方法来获得训练数据,从而获得了最小根平方误差(RMSE)。对于井2和3井中的孔隙压力数据,SVM,RF,XGB和MLP的确定系数(R 2)为0.9930和0.9446、0.9943和0.9943和0.9472、0.9472、0.9945和0.9945和0.9488、0.9949、0.9949、0.9949和0.9949和0.9574。MLP在训练和测试数据上都达到了最佳性能,MLP模型显示出高度的概括。©2023作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.表明IGWO-MLP是孔隙压力的极好预测指标,可用于预测孔隙压力。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
摘要轴承是带有变速箱的任何机械的关键元素。必须有效诊断轴承断层以确保机械的安全性和正常操作。因此,轴承中机械故障的识别和评估对于确保可靠的机械操作非常重要。这项比较研究表明,通过利用各种机器学习方法,包括SVM,KNN,线性回归,脊回归,XGB回归,ADABOOST回归和CAT促进回归,轴承诊断的性能。轴承就像机械世界的无名英雄一样,在船上从车轮到螺旋桨,都极大地支撑和指导所有事物的平稳运动。然而,与其他机械组件一样,随着时间的流逝,轴承的持续使用会导致磨损,这最终可能导致故障。
板球是最受欢迎的游戏。印度超级联赛(IPL)是全美争夺的几个系列之一。已经提出了一种具有两种技术的模型。第一个是得分预测,第二个是对球队获胜的预测。线性回归,逻辑回归,决策树,随机森林,梯度提升回归器,额外的树回归器和XGB回归器用于得分预测。这项研究收集并分析了IPL数据跨越多年的IPL数据,包括球员,比赛,团队和球对球信息,以产生几个结论,有助于改善球员的表现。为了预测获胜者,该模型采用了有监督的机器学习技术。为了高精度,额外的树回收剂以良好的精度使用,为90%。
目的:本研究应用机器学习(ML)和可解释的人工智能(XAI)来预测HbA1c水平的变化,这是监测血糖控制的关键生物标志物,在诊断为2型糖尿病患者的患者中,在启动一种新的抗糖尿病药物后的12个月内。它还旨在确定与这些变化相关的预测因素。患者和方法:来自芬兰北卡雷利亚(North Karelia)的10,139名2型糖尿病患者的电子健康记录(EHR)用于训练整合了随机对照试验(RCT)衍生的HBA1C变化值作为预测变量的预测因子,创建将RCT洞察力与现实世界中集成的偏移模型。各种ML模型 - 包括线性回归(LR),多层感知器(MLP),山脊回归(RR),随机森林(RF)和XGBoost(XGB) - 使用R²和RMSE衡量标准进行评估。基线模型在药物启动之前或之前使用的数据,而随访模型包括第一个药物后HBA1C测量,通过合并动态患者数据来改善性能。模型性能也与临床试验中预期的HBA1C变化进行了比较。结果:结果表明,ML模型的表现要优于RCT模型,而LR,MLP和RR模型具有可比性的性能,RF和XGB模型表现出过于拟合。与基线模型相比,随访MLP模型的表现优于基线MLP模型,其R²得分(0.74,0.65)和较低的RMSE值(6.94,7.62)与基线模型(R²:0.52,0.54; RMSE; RMSE:9.27,9.50)相比。HBA1C变化的关键预测因子包括基线和药后HBA1C值,禁食等离子体葡萄糖和HDL胆固醇。未来的研究将探索治疗选择模型。结论:使用EHR和ML模型可以开发对HBA1C变化的更真实和个性化的预测,考虑到更多样化的患者人群及其异质性,为管理T2D提供了更量身定制和有效的治疗策略。XAI的使用提供了对特定预测因子影响的见解,从而增强了模型的解释性和临床相关性。关键字:类型2糖尿病,HBA1C,治疗效果估计,机器学习,Shap
这项纵向研究利用了FASA成人队列研究(FACS)的数据。该研究最初包括在伊朗FASA农村地区35-70岁的1018名参与者,并在5年后使用随机抽样进行了3,000名参与者的随访。在机器学习(ML)模型中总共包括160个变量,并使用特征缩放和单热编码进行数据处理。Ten supervised ML algorithms were utilized, namely logistic regression (LR), support vector machine (SVM), random forest (RF), Gaussian naive Bayes (GNB), linear discriminant analysis (LDA), k-nearest neighbors (KNN), gradient boosting machine (GBM), extreme gradient boosting (XGB), cat boost (CAT), and light Gra-streent Boosting Machine(LGBM)。超参数调整是使用超参数的各种组合来识别最佳模型的。合成少数民族过度抽样技术(SMOTE)用于平衡训练数据,并使用Shapley添加说明(SHAP)进行了特征选择。
抽象背景在全球范围内心血管疾病的发病率和死亡率是医疗保健行业的主要问题。精确预测心血管疾病至关重要,机器学习和深度学习的使用可以帮助决策和增强预测能力。目的本文的目的是通过结合机器学习和深度学习来引入一种用于精确心血管疾病预测的模型。方法,除本地收集的数据集外,具有70,000和1190记录的两个公共心脏病分类数据集,我们的实验中使用了600个记录。然后,本文提出了一种使用机器学习和深度学习的模型。除了KNN和XGB之外,提议的模型采用了CNN和LSTM作为深度学习模型的代表,作为机器学习模型的代表。每个分类器定义了输出类,然后将多数投票用作整体学习者来预测最终的输出类。结果,根据所有数据集的所有评估指标,提出的模型获得了最高分类性能,这表明其在预测心血管疾病的可能性方面的适用性和可靠性。关键词心脏,心血管疾病,机器学习,深度学习,组合模型
本研究调查了机器学习模型在开放式元视频中的区块链交易中的异常检测和欺诈分析的应用,这是虚拟空间中数字交易的日益增长的复杂性。Utilizing a dataset of 78,600 transactions that reflect a broad spectrum of user behaviors and transaction types, we evaluated the efficacy of several predictive models, including RandomForest, LinearRegression, SVR, DecisionTree, KNeighbors, GradientBoosting, AdaBoost, Bagging, XGB, and LightGBM, based on their Mean Cross-Validation Mean Squared Error (Mean CV MSE)。我们的分析表明,集合方法,尤其是Random Forest和Bagging,表现出卓越的性能,平均CV MSE分别为-0.00445和-0.00415,从而在复杂的交易数据集中突出了它们的稳健性。相比之下,线性回归和SVR是最不可能的,平均CV MSE为-224.67和-468.57,表明与数据集特性存在潜在的未对准。这项研究强调了在开放式元元中选择适当的机器学习策略的重要性,从而表明了对高级,适应性的方法的需求。这些发现对金融技术领域产生了重大贡献,尤其是在增强虚拟经济体系内的安全性和完整性方面,并倡导在区块链环境中采用细微差别的异常检测和欺诈分析方法。
可以削弱个人使用准确信息做出明智决定的能力,假新闻可能会以多种方式影响我们的生活。例如,经验证据表明,传播医疗保健谣言可能会使现有的大流行病恶化。同样,虚假的财务信息可能会误导投资者做出不良的投资决策并遭受资本损失。此外,捏造的科学主张可能会误导决策者,从而导致可能带来长期后果的不良选择。作为另一种常见的每日现象,欺骗性的产品评论可能会吸引客户进行不必要的购买。因此,确定虚假新闻的有效机制将是对其进行对抗的第一步,以减轻其社会和经济影响,并为数字时代的信息完整性提供急需的保障。Dozens of studies have used the following machine learning algorithms to detect fake news: Support Vector Machine (SVM), Logistic Regression (LR), Passive-Aggressive Classifier (PAC), Stochastic Gradient Descent (SGD), Random Forest (RF), Naïve Bayes (NB), decision tree (DT), XGBoost (XGB), AdaBoost (AB), Gradient Boosting (GB)和K-Nearest邻居(KNN)。此外,过去的研究还使用了深度学习算法,例如BERT,长期记忆(LSTM),
SARS-CoV-2 3CLpro 蛋白是 COVID-19 的主要治疗靶点之一,因为它在病毒复制中起着关键作用,具有各种高质量的蛋白质晶体结构,并可作为计算筛选具有改进的抑制活性、生物利用度和 ADMETox 特性的化合物的基础。ChEMBL 和 PubChem 数据库包含筛选针对 SARS-CoV-2 3CLpro 的小分子的实验数据,这扩大了学习模式和设计计算模型的机会,该模型可以在体外和体内测试之前预测任何药物化合物对抗冠状病毒的效力。在这项研究中,我们利用几个描述符评估了 27 个机器学习分类器。我们还开发了一个神经网络模型,该模型可以在 CheMBL 数据上以 91% 的准确率正确识别生物活性和非活性化学物质,在 CheMBL 和 Pubchem 的组合数据上以 93% 的准确率正确识别生物活性和非活性化学物质。非活性和活性化合物的 F1 分数分别为 93% 和 94%。在 XGB 分类器上使用 SHAP (SHapley Additive exPlanations) 从 PaDEL 描述符中找出此任务的重要指纹。结果表明,PaDEL 描述符在预测生物活性方面是有效的,所提出的神经网络设计是有效的,并且通过 SHAP 的解释因子正确地识别了重要的指纹。此外,我们使用包含超过 100,000 个分子的大型数据集验证了我们提出的模型的有效性。本研究采用了各种分子描述符来发现最适合此任务的描述符。为了评估这些可能的药物对抗 SARS-CoV-2 的有效性,需要进行更多的体外和体内研究。