1. Kiyamova R 等人。Exp Oncol。2011;33(3):157_161;2. Richardson D 等人。Gynecol Oncol Rep。2022;44(2):S16-S17;3. Banjeree S 等人。Ann Oncol。2018;29(4):917_923;4. Fessler S 等人。Can Res。2020;80(suppl 16):2894。a IHC 标记强度:1+ = 弱;2+ = 中等;3+ = 强。ADC,抗体药物偶联物;NaPi2b,钠依赖性磷酸转运蛋白 2b;ILD,间质性肺病;AST,天冬氨酸转氨酶;PK,药代动力学;IHC,免疫组织化学
• A121 60 GHz Pulsed Coherent Radar (PCR) with integrated baseband, RF front-end and Antenna in Package (AiP) • 32-bit ARM ® Cortex ® M4 MCU (STM32L431CBY6), 80 MHz clk speed, 128kB Flash, 64 kB RAM • Small 18.6x15 mm form factor, optimized for maximum antenna gain • 1.8 V模拟和数字电源•1.8 V或3.3 V IO接口电源•工作温度-40°至85°C•外部I/F支撑UART,I2C,GPIO,GPIO,重置,重置•SW/JTAG•SW/JTAG用于SW闪光灯和调试•可以在塑料或玻璃辐射的后面集成,而无需进行物理弹出。有关更多信息,请参见硬件和物理集成指南[6]。•陆地网格阵列(LGA)焊接板•在密封的卷轴中可用于自动组装•SWD编程的PCB测试点
• A121 60 GHz 脉冲相干雷达 (PCR),集成基带、RF 前端和封装天线 (AiP) • 32 位 ARM ® Cortex ® M4 MCU (STM32L431CBY6),80 MHz 时钟速度,128kB 闪存,64 kB RAM • 18.6x15 mm 小型尺寸,针对最大天线增益进行了优化 • 1.8 V 模拟和数字电源 • 1.8 V 或 3.3 V IO 接口电源 • 工作温度 -40° 至 85°C • 通过 UART、I2C、GPIO、复位支持外部 I/F • SWD/JTAG 用于 SW 闪存和调试 • 可以集成在塑料或玻璃天线罩后面,无需任何物理孔径。有关更多信息,请参阅硬件和物理集成指南 [6]。 • 平面栅格阵列 (LGA) 焊盘 • 提供密封卷轴,用于自动组装 • 用于 SWD 编程的 PCB 测试点
摘要。糖尿病是一种慢性代谢疾病,通常与诸如心脏疾病,肾病和神经病等并发症有关,其发病率每年都在增加。转录因子Forkhead Box M1(FOXM1)在糖尿病及其并发症的发展中起重要作用。本研究旨在回顾FOXM1与糖尿病发病机理及其并发症之间的关联。FOXM1可能通过调节细胞生物学过程,例如细胞周期,DNA损伤修复,细胞分化和上皮 - 间质转变来参与糖尿病的发育和发展及其并发症。FOXM1参与了胰岛素分泌和胰岛素抵抗的调节,FOXM1通过调节胰岛素相关基因和信号传导途径的表达来影响胰岛素分泌。 FOXM1参与糖尿病的炎症反应,FOXM1可以调节与炎症反应和免疫细胞相关的关键基因,从而影响炎症反应的发生和发展;最后,FOXM1参与了糖尿病并发症的调节,例如心血管疾病,肾病和神经病。总之,转录因子FOXM1在糖尿病的发育及其并发症中起重要作用。未来的研究应探讨FOXM1在糖尿病中的机制,并找到FOXM1的新靶标作为对糖尿病及其并发症的潜在治疗方法。
摘要 Argonaute (Ago) 蛋白是存在于真核生物和原核生物中的保守可编程核酸酶,可防御移动遗传元件。几乎所有已表征的 pAgo 都倾向于切割 DNA 靶标。本文,我们描述了一种来自 Verrucomicrobia 细菌的新型 pAgo (VbAgo),它可以在 37°C 下特异性地切割 RNA 靶标而不是 DNA 靶标,并可作为具有突出催化能力的多重周转酶发挥作用。VbAgo 利用 DNA 向导 (gDNA) 在规范切割位点切割 RNA 靶标。同时,在低浓度 NaCl 下切割活性显著增强。此外,VbAgo 对 gDNA 和 RNA 靶标之间的错配表现出较弱的容忍度,位置 11 至 12 的单核苷酸错配和位置 3 至 15 的双核苷酸错配会显著降低靶标切割。此外,VbAgo 可以在 37°C 下有效切割高度结构化的 RNA 靶标。VbAgo 的这些特性拓宽了我们对 Ago 蛋白的理解,并扩展了基于 pAgo 的 RNA 操作工具箱。
背景:尽管取得成功,但检查点封锁免疫疗法已被证明在选定的肺癌患者人群中具有挑战性。这部分是由于发挥作用时广泛的肿瘤内异质性以及识别非肿瘤抗原的旁观者T细胞的渗透。最近的临床试验证明了使用大量未富含肿瘤浸润的淋巴细胞的过养细胞疗法的功效,但成功仍然有限。因此,需要新型的肿瘤抗原来进一步改善肺癌中细胞免疫疗法的成功。叉子盒M1(FOXM1)是在90%的肺癌中表达的转录因子,缺乏在脑组织中的表达,使其成为T细胞受体(TCR)工程的吸引力。有趣的是,FOXM1的上调与对酪氨酸激酶抑制剂(TKIS)的耐药性有关,强调了该靶标的另一种潜在的治疗应用。在这里,我们评估了FOXM1的免疫原性及其作为非小细胞肺癌中细胞治疗靶标的潜力。方法:分离抗原特异性T细胞,然后通过HLA匹配的健康供体PBMC的肽刺激扩展。然后,通过四聚体分选并进行单细胞TCR测序,以鉴定TCR的全长α和β链,将抗原特异性T细胞分离出来。TCR逆转录病毒设计为健康的供体PBMC,并通过Chromium-51释放(细胞毒性),ELISPOT(IFN-分泌)和ELISA(MIP-1分泌)评估功能。结果:在HLA-A*02:01(占美国人口的42%)上时,FOXM1(YLVPIQFPV)的表位是免疫原性的。该表位被证实是自然处理的,并使用H1975细胞进行了呈现。对细胞毒性的评估表明,TCR工程PBMC裂解了51%的H1975细胞,而H1975的H1975父母细胞仅为10%(p <0.0001)。通过ELISPOT评估的细胞因子评估表明,ELISA的IFN-r-斑点(P <0.05)和MIP-1分泌(P <0.05)显着增加。结论:我们的发现证实了在美国最普遍的HLA等位基因上呈现FOXM1的免疫原性,并支持TCR工程靶向FOXM1治疗肺癌的可行性。
ADA,抗药物抗体; ADC,抗体 - 药物结合; Af -hpa,auristatin f-羟丙基酰胺; A/MBC,晚期或转移性乳腺癌; BC,乳腺癌; Boin,贝叶斯最佳间隔; BRCA,BRCA DNA修复相关基因; CD,分化簇; CT,化学疗法; DAR,药物与抗体比; des,剂量升级; DL,剂量水平; DOR,响应持续时间; EC,子宫内膜癌; ECOG PS,东方合作肿瘤学组绩效状况; ER,雌激素受体; ET,基于内分泌的疗法; Exp,剂量扩展; HER2,人表皮生长因子受体2; HGSOC,高级浆液卵巢癌; HR,激素受体; iv,静脉注射;很多,治疗线; mAb,单克隆抗体; MTD,最大耐受剂量; NAB,中和抗体; OC,卵巢癌; ORR,客观响应率; OS,整体生存; OV,卵巢; PARPI,聚(ADP- ribose)聚合酶抑制剂; PD ‑ 1,编程死亡受体1; PD − L1,编程的死亡受体 - 配体1; PDX,患者衍生的异种移植物; PK,药代动力学;问,每个;恢复,实体瘤的反应评估标准; RP2D,建议的2期剂量; RSEM,平均值的相对标准; SEM,平均值的标准误差; SOC,护理标准; TNBC,三阴性乳腺癌; UCEC,子宫类子宫内膜癌。ADA,抗药物抗体; ADC,抗体 - 药物结合; Af -hpa,auristatin f-羟丙基酰胺; A/MBC,晚期或转移性乳腺癌; BC,乳腺癌; Boin,贝叶斯最佳间隔; BRCA,BRCA DNA修复相关基因; CD,分化簇; CT,化学疗法; DAR,药物与抗体比; des,剂量升级; DL,剂量水平; DOR,响应持续时间; EC,子宫内膜癌; ECOG PS,东方合作肿瘤学组绩效状况; ER,雌激素受体; ET,基于内分泌的疗法; Exp,剂量扩展; HER2,人表皮生长因子受体2; HGSOC,高级浆液卵巢癌; HR,激素受体; iv,静脉注射;很多,治疗线; mAb,单克隆抗体; MTD,最大耐受剂量; NAB,中和抗体; OC,卵巢癌; ORR,客观响应率; OS,整体生存; OV,卵巢; PARPI,聚(ADP- ribose)聚合酶抑制剂; PD ‑ 1,编程死亡受体1; PD − L1,编程的死亡受体 - 配体1; PDX,患者衍生的异种移植物; PK,药代动力学;问,每个;恢复,实体瘤的反应评估标准; RP2D,建议的2期剂量; RSEM,平均值的相对标准; SEM,平均值的标准误差; SOC,护理标准; TNBC,三阴性乳腺癌; UCEC,子宫类子宫内膜癌。
在这里,我们证明了XMT-2056表现出ADCC(抗体依赖性细胞介导的细胞毒性)功能,该功能随着STING途径的激活而协同,并诱导HER2表达癌细胞和FCγ-RIII +(CD16 + CD16 +)的HER2表达癌细胞中有效的癌细胞细胞活性。我们表明,XMT-2056和HT-19(未结合的父母抗HER2抗体)在FC效应的功能中保留了在PBMC共培养中以Fcγ-RI-Expectress Expectress Expectress Expectress的髓样细胞耗尽的PBMC共培养中的重要癌细胞杀死活性。通过Fcγ-RIII +免疫细胞的共排除,该活性消除了,这说明了XMT-2056的ADCC功能。在这种情况下,与HT-19相比,XMT-2056癌细胞杀伤活性显着增加,这表明刺痛激动剂有效载荷有助于对XMT-2056治疗观察到的差异活动。的确,癌细胞和免疫细胞与HT-19的共同培养和自由刺痛激动剂有效载荷共同培养增强了抗肿瘤反应,尽管其程度较小,而不是XMT-2056,这表明ADCC函数和Sting途径激活之间的协同作用。
