r eference•Camenisch U,Nageli H. XPA基因,其产物和生物学作用。adv exp medbiol。2008; 637:28-38。 doi:10.1007/978-0-387-09599-8_4。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/19181108)•Cleaver JE,州JC。 人和眼核细胞中的DNA损伤识别问题:XPA损伤结合蛋白。 Biochem J. 1997年11月15日; 328(pt1)(pt 1):1-12。 doi:10.1042/bj3280001。 PubMed的引用(https://pubmed.ncbi。 nlm.nih.gov/9359827)或PubMed Central上的免费文章(https://www.ncbi.nlm.nih.g ov/pmc/pmc/pmc1218880/)•cleteaver je,thompson lh,thompson lh,richardson as astates jc jc jc。 紫外线敏感性疾病中突变的摘要:Xeroderma cipmentosum,Cockayne综合征和三神性疾病。 嗡嗡声突变。 1999; 14(1):9-22。 doi:10.1002/(SICI)1098-1004(1999)14:13.0.co; 2-6。 Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/104472 54) • Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing afounder mutation在XPA DNA修复基因中,基因占日本人口的近1%。 mutat res。 2006年10月10日; 601(1-2):171-8。 doi:10.1016/j.mrfmmm。 2006.06.010。 Epub 2006年8月14日。 引用于PubMed(https://pubmed.ncbi.nlm.nih.g ov/16905156)•琼斯CJ,伍德路。 xeroderma色素组的优先结合与受损的DNA相结合。 生物化学。 1993年11月16日; 32(45):12096- 104.DOI:10.1021/bi00096a021。 基因。2008; 637:28-38。 doi:10.1007/978-0-387-09599-8_4。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/19181108)•Cleaver JE,州JC。人和眼核细胞中的DNA损伤识别问题:XPA损伤结合蛋白。Biochem J.1997年11月15日; 328(pt1)(pt 1):1-12。 doi:10.1042/bj3280001。PubMed的引用(https://pubmed.ncbi。nlm.nih.gov/9359827)或PubMed Central上的免费文章(https://www.ncbi.nlm.nih.g ov/pmc/pmc/pmc1218880/)•cleteaver je,thompson lh,thompson lh,richardson as astates jc jc jc。紫外线敏感性疾病中突变的摘要:Xeroderma cipmentosum,Cockayne综合征和三神性疾病。嗡嗡声突变。1999; 14(1):9-22。 doi:10.1002/(SICI)1098-1004(1999)14:13.0.co; 2-6。 Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/104472 54) • Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing afounder mutation在XPA DNA修复基因中,基因占日本人口的近1%。 mutat res。 2006年10月10日; 601(1-2):171-8。 doi:10.1016/j.mrfmmm。 2006.06.010。 Epub 2006年8月14日。 引用于PubMed(https://pubmed.ncbi.nlm.nih.g ov/16905156)•琼斯CJ,伍德路。 xeroderma色素组的优先结合与受损的DNA相结合。 生物化学。 1993年11月16日; 32(45):12096- 104.DOI:10.1021/bi00096a021。 基因。1999; 14(1):9-22。 doi:10.1002/(SICI)1098-1004(1999)14:13.0.co; 2-6。Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/104472 54) • Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing afounder mutation在XPA DNA修复基因中,基因占日本人口的近1%。mutat res。2006年10月10日; 601(1-2):171-8。 doi:10.1016/j.mrfmmm。2006.06.010。Epub 2006年8月14日。引用于PubMed(https://pubmed.ncbi.nlm.nih.g ov/16905156)•琼斯CJ,伍德路。xeroderma色素组的优先结合与受损的DNA相结合。生物化学。1993年11月16日; 32(45):12096- 104.DOI:10.1021/bi00096a021。基因。引用PubMed(https://pubmed.ncbi.nlm.nih.go v/8218288)•satokata I,iwai K,Matsuda T,Okada Y,Tanaka K.人类DNA切除控制基因控制基因组的基因组表征,Xpac。1993 Dec22; 136(1-2):345-8。 doi:10.1016/0378-1119(93)90493-m。 PubMed引用(https://pubmed.nc bi.nlm.nih.gov/8294029)1993 Dec22; 136(1-2):345-8。 doi:10.1016/0378-1119(93)90493-m。 PubMed引用(https://pubmed.nc bi.nlm.nih.gov/8294029)
核苷酸切除DNA修复(NER)去除各种基因组病变。ner可以通过两种不同的途径启动:全局基因组修复(GG-NER)和转录耦合修复(TC-NER)。随后两种途径都将涉及转录因子IIH(TFIIH)复合物和中央支架蛋白XPA募集的通用途径汇入,该途径可实现完整的复合体组装。尽管认为损害识别后的下游步骤是相同的,但我们确定了XPA中相关的疾病突变,该突变严重削弱了与TFIIH复合物的相互作用,从而使TC-NER受到比GG-NER更大的影响。对GG-NER和TC-NER的这种差异影响提出了从病变识别到NER两种途径的双重切口的过渡中意外的机械差异。
蛋白XPA在核苷酸切除修复途径中起关键作用。最近的实验工作表明,XPA的功能动力学涉及沿DNA的一维扩散以搜索损伤位点。在这里,我们使用各种盐浓度的广泛的粗粒分子模拟来研究所涉及的动力学过程。结果表明扩散机制的盐浓度依赖性很强。在低盐浓度下,与旋转耦合的一维扩散是主要机制。在高盐浓度下,三维机制的扩散变得更有可能。在较广泛的盐浓度下,涉及DNA结合的残基是相似的,并且沿DNA显示的XPA的一维扩散是降低功能。此亚延伸功能暂定归因于XPA – DNA相互作用的各种强度。另外,我们表明,与DNA的结合和盐浓度升高倾向于拉伸XPA的构象,从而增加了位点的暴露范围,以结合其他修复蛋白。
简单总结:弥漫大 B 细胞淋巴瘤是最常见的淋巴瘤类型。尽管接受了初始治疗,但多达 40% 的患者未能治愈,需要二线治疗。对于那些经历晚期复发或无法获得 CAR-T 细胞疗法的患者,以铂类为基础的化疗后进行干细胞移植仍然是标准治疗方法。在这项研究中,我们使用全基因组 CRISPR/Cas9 筛选和单基因敲除实验来识别与对铂类药物的反应相关的基因。我们提供了与 DLBCL 对顺铂的反应有关的基因的综合列表。我们的功能实验强调了 DNA 损伤反应基因 XPA 和 ERCC6 以及 BTK 在对铂类药物的反应中的关键作用。此外,我们还表明,抑制较低浓度的 BTK 会使 DLBCL 细胞对铂类药物敏感。
已经对CSB的所有这些特征进行了研究,主要采用了各种CS,中国仓鼠卵巢和小鼠模型衍生的原代细胞的患者的皮肤纤维细胞。单型细胞系通常非常适合初始基因功能分析和结构 - 功能关系研究,但无法完全说明多功能蛋白(例如具有多系统表现的CSB)的影响。在1997年,描述了CS的第一个小鼠模型[17],从而可以研究受影响组织和整个生物体研究的原代细胞。从那时起,已经建立了所有CS相关基因,CSB,CSA,XPB,XPD和XPG的小鼠模型[18-22]。CS小鼠模型(XPG除外)通常发挥轻度的CS表型,其体重,紫外线敏感性,轻度神经退行性变化以及皮肤肿瘤发生的令人惊讶的增加,在CS的人类患者中找不到症结。对于严重CS的建模,CSA-或CSB-有效的小鼠可以与缺少TC-NER机械基因的小鼠交叉,例如XPA或XPC [19,23]。
[1] DM Rowe,CRC热电手册,CRC出版社,佛罗里达州博卡拉顿,1995年。 [2] AJ Minnich、MS Dresselhaus、ZF Ren、G Chen,能源与环境科学2009,2,466。[3] S Bathula、M Jayasimhadri、B Gahtori、NK Singh、K Tyagi、AK Srivastava、A Dhar,纳米尺度2015,7,12474合金与化合物杂志2018,746,350。[5] Tian Y、Sakr MR、Kinder JM、Liang D、MacDonald MJ、Qiu H.-J. Gao,XPA Gao,Nano信件2012,12,6492。[6] S. Acharya,D。Dey,T。Maitra,A。Soni,A。Taraphder,应用物理信件2018,113,193904(1。[7] ANO信件2012,12,4305。[8] L.-D. ,C.-I。Wu,TP Hogan,DN Seidman,副总裁Dravid,Mg Kanatzidis,自然2012,489,414。[10] S. Acharya,J。Pandey,A。Soni,A. Soni,Applied Physics Letters,2016,109,109,109,133904。 ,139,4350。[12] T. Takabatake,K。Suekuni,T。Nakayama,E。Kaneshita,评论,现代物理学2014,86,669 ,A。Soni,应用物理信2020,117,123901。[16] P. Acharyya,T。Ghosh,K。Pal,K。Kundu,K。SinghRana,J。Pandey,J。Pandey,J。Pandey,A。Soni,A。Soni,A。Soni,uv Waghmare,K。Biswas,K。Biswas,美国化学学会杂志,美国化学学会杂志2020,142,142,142,15595。
背景 .由于晚期宫颈癌的治疗手段不具特异性以及缺乏分子靶向药物,晚期宫颈癌的治疗仍具有较大的挑战性,寻找新的宫颈癌治疗生物标志物十分必要。方法 .本研究通过转染携带KIN17 siRNA的重组慢病毒载体,构建kin17敲低的宫颈细胞株HeLa和SiHa,并用嘌呤霉素进行筛选。通过荧光观察和蛋白质印迹法检测建立的kin17敲低细胞。流式细胞术检测细胞凋亡和线粒体膜电位(MMP)。分光光度法检测caspase 3酶活性。蛋白质印迹法分析凋亡相关蛋白的表达谱。最后,我们利用生物信息学和蛋白质组学数据分析宫颈癌中的KIN相关基因。结果 .结果显示,转染基因沉默载体的HeLa和SiHa细胞中kin17的荧光阳性率较高(> 90%),基因沉默效率较高(> 65%)。此外,kin17的缺失分别使HeLa和SiHa细胞的MMP降低和凋亡率增加。此外,敲低kin17可以增强HeLa和SiHa细胞中caspase 3酶活性,增加裂解PARP和Bim的表达,同时降低Bcl-xL和磷酸化BAD的表达。宫颈癌KIN相关预后基因的鉴定显示,共构建了5个基因(FZR1、IMPDH1、GPKOW、XPA和DDX39A)用于该风险评分,结果显示CTLA4表达与风险评分呈负相关。结论。我们的研究结果表明,kin17 敲低可通过靶向 caspase 3、PARP 和 Bcl-2 家族蛋白促进宫颈癌细胞凋亡。此外,kin17 可以通过线粒体途径调控癌细胞凋亡,可作为调节宫颈癌细胞凋亡的新型治疗靶点。