前言 《2022-2041 年长期发电扩建规划研究》报告介绍了锡兰电力局输电和发电规划处针对 2022-2041 年规划期进行的最新扩建规划研究的结果,并取代了《2018-2037 年长期发电扩建计划》。除了扩建研究结果外,本报告还全面介绍了现有发电系统、未来电力需求和未来发电选择。研究中使用了最新的可用数据。规划团队谨向所有协助编写报告的人表示感谢。我们欢迎为改进本出版物提出建议、意见和批评。2021 年 10 月。输电和发电规划处信件:总部大楼 5 楼。Tr. 和发电规划处锡兰电力局锡兰电力局 5 楼 Sir Chittampalam A. Gardinar Mw。 PO Box 540 Colombo 02 科伦坡,斯里兰卡 电子邮件:cegptgp.tr@ceb.lk 电话:+94-11-2329812 传真:+94-11-2434866 编写者: 审核人: VB Wijekoon 先生 GJ Aluthge 先生 总工程师(发电规划和设计) 额外总经理(输电) MMSMK Gunaratne 先生 电气工程师 前额外总经理(输电) RB Wijekoon 先生 ML Weerasinghe 先生 DC Hapuarachchi 女士 副总经理(输电和发电规划) MDV Fernando 女士 KHA Kaushalya 先生 KAMNPathiratne 先生 如欲寻求任何澄清或索取报告副本,请发送至上述地址的副总经理(输电和发电规划)。
5 未来扩展的可再生能源发电选项 5-1 5.1 简介 5-1 5.2 主要水电开发 5-2 5.2.1 现有的水电项目研究 5-2 5.2.2 已承诺的水电项目 5-3 5.2.3 候选水电项目 5-4 5.2.4 水力发电厂的容量 5-5 5.3 水电容量扩展 5-6 5.3.1 Mahaweli 综合体 5-6 5.3.2 Samanala 综合体 5-7 5.3.3 Laxapana 综合体 5-8 5.4 其他可再生能源开发 5-8 5.4.1 2023 - 2032 年可再生能源电网整合研究 5-10 5.4.2 风能资源开发 5-13 5.4.3 太阳能开发 5-14 5.4.4 小型水电开发 5-17 5.4.5 生物质发电发展 5-17 5.4.6 城市固体废物发电 5-18 5.4.7 其他形式的可再生能源技术 5-18 5.5 电网规模储能发展 5-18 5.5.1 电网规模电池储能发展 5-19 5.5.2 抽水蓄能水电发展 5-19
Page Contents i Annexes vii List of Tables viii List of Figures xi Acronyms xiv EXECUTIVE SUMMARY E-1 1 INTRODUCTION 1-1 1.1 Background 1-1 1.2 Economy of Sri Lanka 1-2 1.2.1 Electricity and Economy 1-3 1.2.2 Economic Projections 1-4 1.3 Energy Sector of Sri Lanka 1-4 1.3.1 Energy Supply in Sri Lanka 1-5 1.3.2 Energy Demand in Sri Lanka 1-6 1.4 Electricity Sector 1-8 1.4.1 Global Electricity Sector 1-8 1.4.2 Sri Lankan Electricity Sector 1-11 1.4.3 Access to Electricity 1-11 1.5 Emissions 1-19 1.6 Implementation of the Expansion Plan 1-22 1.7 Structure of the Report 1-23 2 THE EXISTING AND COMMITTED GENERATING PLANTS 2-1 2.1 Background 2-1 2.2 Hydro and Other Renewable Generation 2-2 2.2.1 Hydro and CEB 2-3 2.2.2独立电力生产商拥有的其他可再生电厂2-5 2.2.3可再生发电2-8 2.3 2.3 2.3.3热电厂由CEB 2-8 2.3.3 2.3.2热电厂汇总政策和准则3-4 3.4需求预测方法3-4 3.4.1中期需求预测(2025-2029)3-5 3.4.2长期需求预测(2030-2049)3-6 3.4.3未来的主要开发项目3-8 3.4.4 3.4.4累积电力需求需求需求预测3-9 3.4.5网3-9 3.4.5 net ecerec 3-9
到 2042 年,预计累计装机容量如下:太阳能光伏 - 10,739 兆瓦;风能 - 3,573 兆瓦;水电 - 2,271 兆瓦;生物质能 - 380 兆瓦
Page Contents i Annexes vii List of Tables viii List of Figures xi Acronyms xiv EXECUTIVE SUMMARY E-1 1 INTRODUCTION 1-1 1.1 Background 1-1 1.2 Economy of Sri Lanka 1-2 1.2.1 Electricity and Economy 1-3 1.2.2 Economic Projections 1-4 1.3 Energy Sector of Sri Lanka 1-4 1.3.1 Energy Supply in Sri Lanka 1-5 1.3.2 Energy Demand in Sri Lanka 1-6 1.4 Electricity Sector 1-8 1.4.1 Global Electricity Sector 1-8 1.4.2 Sri Lankan Electricity Sector 1-11 1.4.3 Access to Electricity 1-11 1.5 Emissions 1-19 1.6 Implementation of the Expansion Plan 1-22 1.7 Structure of the Report 1-23 2 THE EXISTING AND COMMITTED GENERATING PLANTS 2-1 2.1 Background 2-1 2.2 Hydro and Other Renewable Generation 2-2 2.2.1 Hydro and CEB 2-3 2.2.2独立电力生产商拥有的其他可再生电厂2-5 2.2.3可再生发电2-8 2.3 2.3 2.3.3热电厂由CEB 2-8 2.3.3 2.3.2热电厂汇总政策和准则3-4 3.4需求预测方法3-4 3.4.1中期需求预测(2025-2029)3-5 3.4.2长期需求预测(2030-2049)3-6 3.4.3未来的主要开发项目3-8 3.4.4 3.4.4累积电力需求需求需求预测3-9 3.4.5网3-9 3.4.5 net ecerec 3-9
8澳大利亚政府,未来天然气战略,分析报告,https://www.industry.gov.au/sites/default/default/files/2024-05/future-future- gas-strategy-analytical-analytical-ralealtility-report.pdf
Aurora,安大略省,2025年2月11日 - 数十年来,麦格纳一直是梅赛德斯 - 奔驰的战略合作伙伴,创造了创新和卓越的遗产。这种合作跨越了车辆的多个区域,包括动力总成和传动系统系统,ADAS技术,车身和机箱组件,电气化,内部系统,车辆组件等。“与我们的客户建立牢固的合作伙伴关系对于推动创新和推进汽车行业至关重要,” Magna首席战略与商务官Eric Wilds说。“我们与梅赛德斯 - 奔驰的持续合作伙伴关系体现了如何共同努力的方式可以带来开创性的解决方案和相互成功。”这种长期合作伙伴关系包括自1979年以来在奥地利的麦格纳(Magna's Graz)生产超过500,000个标志性的越野车。在2024年,麦格纳(Magna)在其奥地利兰纳奇(Lannach)设施的兰纳奇(Lannach)工厂开始生产Eds Duo,这是一个独特的Edrive系统,标志着合作伙伴关系的新篇章。标志性越野车的全新电动型号现在配备了该先进的电动驱动系统,以实现领先的性能和效率。” Magna为梅赛德斯 - 奔驰的标志性越野车提供了三代转移案件,现在很荣幸能为这款传奇的车辆配备其第一代电动单元。“ EDS二人组演示了Magna的灵活方法来交付动力总成解决方案,从内燃烧发动机无缝过渡到电池电动汽车。”2速双电子电机驱动器涵盖了高达240 kW的功率范围,EDS二人组提供了领先的牵引力和越野功能,包括独特的车轮推进系统,该系统可以启用“ G-Turn”之类的功能,从而使车辆可以旋转360度。具有优化的效率和先进的碳化硅和去耦技术,EDS二人组在保持高效率的同时提供出色的性能。
将它们乘以 2.5。这表明英国政府的碳值现在大约是 DfT 分析中假设的旧值的 2 到 3 倍。我们认为这种方法是保守的,因为 (i) DfT 的乘客预测(以及相关的环境影响)明显高于希思罗机场目前正在考虑的预测;(ii) 我们不仅将这种提升应用于碳成本,还将 DfT 对噪音和空气质量的估计也应用于其他影响的广泛替代。对于 2R+ 情景,我们注意到扩张的规模明显低于 3R 情景。因此相关影响也会较低。我们取了 3R 情景的估计数字并乘以 33%——反映了扩张选项的较低规模。但是,还需要进一步研究来得出更可靠的估计。
r eference•Camenisch U,Nageli H. XPA基因,其产物和生物学作用。adv exp medbiol。2008; 637:28-38。 doi:10.1007/978-0-387-09599-8_4。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/19181108)•Cleaver JE,州JC。 人和眼核细胞中的DNA损伤识别问题:XPA损伤结合蛋白。 Biochem J. 1997年11月15日; 328(pt1)(pt 1):1-12。 doi:10.1042/bj3280001。 PubMed的引用(https://pubmed.ncbi。 nlm.nih.gov/9359827)或PubMed Central上的免费文章(https://www.ncbi.nlm.nih.g ov/pmc/pmc/pmc1218880/)•cleteaver je,thompson lh,thompson lh,richardson as astates jc jc jc。 紫外线敏感性疾病中突变的摘要:Xeroderma cipmentosum,Cockayne综合征和三神性疾病。 嗡嗡声突变。 1999; 14(1):9-22。 doi:10.1002/(SICI)1098-1004(1999)14:13.0.co; 2-6。 Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/104472 54) • Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing afounder mutation在XPA DNA修复基因中,基因占日本人口的近1%。 mutat res。 2006年10月10日; 601(1-2):171-8。 doi:10.1016/j.mrfmmm。 2006.06.010。 Epub 2006年8月14日。 引用于PubMed(https://pubmed.ncbi.nlm.nih.g ov/16905156)•琼斯CJ,伍德路。 xeroderma色素组的优先结合与受损的DNA相结合。 生物化学。 1993年11月16日; 32(45):12096- 104.DOI:10.1021/bi00096a021。 基因。2008; 637:28-38。 doi:10.1007/978-0-387-09599-8_4。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/19181108)•Cleaver JE,州JC。人和眼核细胞中的DNA损伤识别问题:XPA损伤结合蛋白。Biochem J.1997年11月15日; 328(pt1)(pt 1):1-12。 doi:10.1042/bj3280001。PubMed的引用(https://pubmed.ncbi。nlm.nih.gov/9359827)或PubMed Central上的免费文章(https://www.ncbi.nlm.nih.g ov/pmc/pmc/pmc1218880/)•cleteaver je,thompson lh,thompson lh,richardson as astates jc jc jc。紫外线敏感性疾病中突变的摘要:Xeroderma cipmentosum,Cockayne综合征和三神性疾病。嗡嗡声突变。1999; 14(1):9-22。 doi:10.1002/(SICI)1098-1004(1999)14:13.0.co; 2-6。 Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/104472 54) • Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing afounder mutation在XPA DNA修复基因中,基因占日本人口的近1%。 mutat res。 2006年10月10日; 601(1-2):171-8。 doi:10.1016/j.mrfmmm。 2006.06.010。 Epub 2006年8月14日。 引用于PubMed(https://pubmed.ncbi.nlm.nih.g ov/16905156)•琼斯CJ,伍德路。 xeroderma色素组的优先结合与受损的DNA相结合。 生物化学。 1993年11月16日; 32(45):12096- 104.DOI:10.1021/bi00096a021。 基因。1999; 14(1):9-22。 doi:10.1002/(SICI)1098-1004(1999)14:13.0.co; 2-6。Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/104472 54) • Hirai Y, Kodama Y, Moriwaki S, Noda A, Cullings HM, Macphee DG, Kodama K, Mabuchi K, Kraemer KH, Land CE, Nakamura N. Heterozygous individuals bearing afounder mutation在XPA DNA修复基因中,基因占日本人口的近1%。mutat res。2006年10月10日; 601(1-2):171-8。 doi:10.1016/j.mrfmmm。2006.06.010。Epub 2006年8月14日。引用于PubMed(https://pubmed.ncbi.nlm.nih.g ov/16905156)•琼斯CJ,伍德路。xeroderma色素组的优先结合与受损的DNA相结合。生物化学。1993年11月16日; 32(45):12096- 104.DOI:10.1021/bi00096a021。基因。引用PubMed(https://pubmed.ncbi.nlm.nih.go v/8218288)•satokata I,iwai K,Matsuda T,Okada Y,Tanaka K.人类DNA切除控制基因控制基因组的基因组表征,Xpac。1993 Dec22; 136(1-2):345-8。 doi:10.1016/0378-1119(93)90493-m。 PubMed引用(https://pubmed.nc bi.nlm.nih.gov/8294029)1993 Dec22; 136(1-2):345-8。 doi:10.1016/0378-1119(93)90493-m。 PubMed引用(https://pubmed.nc bi.nlm.nih.gov/8294029)
