等各种基于X射线的方法,例如常规和高流量X射线衍射(XRD),二维(2D)Micro-XRD,X射线光电子光谱(XPS),小角度X射线散射(SAXS),三维计算机总体式的材料均具有IMMENSENCE fieltiencation fieltiencation。 本研讨会将重点介绍各种基于X射线的基础技术和高级技术,用于表征粉末材料,矿物质,烧结的复合材料,添加性生产(AM)组件(金属,合金,陶瓷,其他非金属,常规 /纳米结构级))。 通过案例研究,专家就这些主题进行了一系列讲座。 研讨会的范围还将包括有关定性期分析,定量相分析(RIR方法和Rietveld改进),痕量相分析,晶格参数,结晶石大小和晶格应变估计技术,错位估计等的教程,等各种基于X射线的方法,例如常规和高流量X射线衍射(XRD),二维(2D)Micro-XRD,X射线光电子光谱(XPS),小角度X射线散射(SAXS),三维计算机总体式的材料均具有IMMENSENCE fieltiencation fieltiencation。本研讨会将重点介绍各种基于X射线的基础技术和高级技术,用于表征粉末材料,矿物质,烧结的复合材料,添加性生产(AM)组件(金属,合金,陶瓷,其他非金属,常规 /纳米结构级))。通过案例研究,专家就这些主题进行了一系列讲座。研讨会的范围还将包括有关定性期分析,定量相分析(RIR方法和Rietveld改进),痕量相分析,晶格参数,结晶石大小和晶格应变估计技术,错位估计等的教程,
使用一种新型的基于热力充分的技术作为一种适合这些高级反射器诊断需求的良好工具。热素感光谱已成为一种有力的工具,用于衡量材料光学性质的变化,并同时将光学性质的这些变化与物理和化学性质以及固体中的电子和热传输过程的相关变化相关。25–36疗法的原则依赖于测量由于温度和/或载流子密度的扰动而导致的样品反射率的变化。26,37,38最大程度地实现了热心型测量值,采用了激光泵 - 探针几何形状,其中调制泵激光器会诱导较小的振荡温度升高,而连续波(CW)探测器探针激光器显示反射率。在调制泵频率下的锁定检测可以使探针反射率的变化敏感至δr = 10-6 –6 –10-4。39–42这种检测表面反射率的小分数变化的能力使疗法更多地触觉计量学可行的途径,以检测表面化学,缺陷和结构的小变化,而这种途径可能无法通过传统上传统上采用的表面表征方法来分辨出来。43,44在这项研究中,我们比较椭圆法,X射线Pho- Toelectroscopicy(XPS),拉曼光谱和傅立叶变换红外(FTIR)光谱,如下所述。43,44在这项研究中,我们比较椭圆法,X射线Pho- Toelectroscopicy(XPS),拉曼光谱和傅立叶变换红外(FTIR)光谱,如下所述。此外,作为基于激光的泵 - 探针 - 探测热型光谱镜依赖于聚焦的激光源(通常是基于1/e 2个点尺寸的单位数字微米的顺序),这类测量还提供了出色的反射率空间分辨率,45-49
作为X射线光电学光谱学(XPS)和其他材料 - 特征技术的一组主题专家,我们撰写了本文件,以提高文献中对贫困和错误材料数据分析的认识。这个问题是一个日益严重的问题,其原因是许多原因和非常不良的后果。它有助于所谓的“可重复性危机”,这是美国国家科学学院的最新关注点。1-3在过去十年中,材料分析技术已经成熟到专门的专家运营商通常不认为是收集和分析数据的必要条件,尤其是当样本被认为是简单或常规的时。现在在包括XP的包括XP的武器库中的工具现在在学术界,工业和政府实验室中使用,以提供构图信息和对各种材料的机械理解。这种情况,再加上设备的可及性,提高仪器的可靠性以及有用数据的承诺,使用这些表征工具和报告材料 - 分析数据导致研究人员数量的显着增长。尽管许多由此产生的论文都具有高质量,尤其是在专注于材料表征的期刊中,但其他论文并不令人满意。在强调下一代材料的期刊中XPS数据的持续分析中,我们发现大约30%的分析是完全不正确的。”4,5这个问题的后果明显大于仅在其他好的论文中执行的数字不佳。因此,对于某些应用,不适当的数据分析已经达到了关键阶段,这使得缺乏相关专业知识的研究人员很难找到并容易地确定可靠的示例,即被认为是优质数据分析的示例。我们在文献中观察到的错误不仅限于可能被认为具有较低影响的期刊 - 它们经常出现在被确定为上层/高影响力的因子期刊中。类似地发现,来自其他材料特征技术的数据分析的20%至30%也不罕见。在一项研究中取决于收集和分析的数据中的结果和结论。如果材料的表征不正确,则整个工作可能存在缺陷。在某些领域,先进的分析工具的扩散似乎超出了世界上所需的专业知识,以收集,解释和审查从中获得的结果。科学中的某些子学科只需要一个单个分析/测量工具,或者仅需要一些用于对其系统进行完整分析的工具。相比之下,材料分析通常取决于多种先进的特征技术,以获得对新薄膜或材料的适当理解。6这些技术通常需要了解其背后的物理和化学,可以以多种模式进行,并且通常需要详细的第一个原理和/或已建立的经验/半经验模型来减少其数据。此外,每种技术都得到专家撰写的广泛文献的支持。除了要求由于需要从这些方法中获得信息,因此对材料的负担很大。
图2。(a)具有构型li | ipn -5pan |不锈钢的细胞的循环伏安法,用于-0.5 V和6 V之间的4个周期。扫描速率为0.5 mV s -1。(b)使用IPN-0PAN和IPN-5PAN作为电解质的Li | Cu不对称细胞的库仑效率测量。电流密度和容量为0.5 mA cm -2和0.5 mAh cm -2。使用IPN-0PAN(C)和IPN-5PAN(D),电解质的第1季度和50个周期的电镀和剥离过程的电压轮廓(D)。使用IPN-0PAN和IPN-5PAN的li | spe | cu细胞的(e)n 1s和(f)O 1s的lithium金属表面的XPS光谱。表面用2 kV的枪支蚀刻1分钟。
图 3:混合 Pb-Sn 钙钛矿薄膜中缺陷的化学分析。 (ad) 对具有不同 Pb/Sn 混合比的钙钛矿组合物进行的 Sn 3d 5/2 核心能级高分辨率 XPS 光谱。 棕色线是背景,红线与原始数据最吻合。 使用合适的拟合确定薄膜中 Sn 2+ 和 Sn 4+ 的相对丰度 (%)。 (e) 不同 Pb-Sn 混合比 (蓝色) 下 Sn 4+ /Sn 2+ 比率的图,以及从 PDS 测量中获得的 Urbach 能量 (红色)。 (f) 在保持薄膜厚度的同时,具有不同 Pb/Sn 成分的钙钛矿薄膜的积分 PL 计数变化。
可以通过Zn-Modifified沸石催化剂进行有效执行的光烯烃转化为高价的芳族烃。1–4已使用了各种方法2,5用于在沸石中加载锌,因此,锌物种,沸石孔内和晶体的外表面的不同类型,尺寸和局部位置已被考虑用于催化的机制。6–8在这方面,正确表征载入沸石的锌物种的状态至关重要。在最近的工作中,我们使用以下实验技术来研究Zeolites中的Zn物种:8个扩展的X射线吸收细胞(EXAFS),X射线光电子光谱(XPS)和弥漫性反射红外傅立叶傅立叶傅立叶变换光谱(Refrancopopicy),后来用于
陶瓷部门继续支持其独特测量能力的升级和扩展。NIST 高级测量实验室 (AML) 的高分辨率 x 射线计量和纳米摩擦学设施中的仪器今年全面投入使用,并已取得前所未有的分辨率结果。随着 NSLS 两条光束线最近现代化,专用于扩展 x 射线吸收精细结构 (EXAFS) 和 x 射线光电子能谱 (XPS),陶瓷部门及其合作伙伴已经建立了对元素周期表所有元素进行 x 射线吸收光谱分析的能力。为期三年的 SBIR 项目已导致在 NSLS 软 x 射线光束线上开发出最先进的多元素探测器,使数据收集率提高了一个数量级。
• 物理冶金学、粉末冶金学(传统制造和增材制造)。• 金属生物材料(泡沫和复合材料)的生产及其表面处理。• 采用激光烧蚀法合成纳米材料(石墨烯衍生物(GO、rGO 和 rGO 凝胶)和金属/石墨烯混合结构),• 场效应晶体管生物传感器生产(乳腺癌检测),• 生物传感器的表面化学和功能化,• 微纳米制造- 洁净室技术实践经验(光刻、DRIE、湿法蚀刻、电子束沉积)。• 表征技术机械表征:通用机械测试设备,表面:AFM、XPS、表面轮廓仪,结构:XRD,光谱:IR 和 UV - 可见光谱、FTIR、拉曼,形态:SEM、TEM,电气表征:探针站,4 点测量。
CV摘要,我看到自己在纳米技术与材料科学之间的界面上有好处。我拥有强大而宽阔的材料科学背景,从分子磁和磁性纳米颗粒开始,后来转向压电和铁电和机电现象,特别强调了表面科学,这为我提供了独特的创造性思维能力。我在纳米技术和纳米科学领域进行广泛的正式培训的基础覆盖了,从表面纳米结构化技术到扫描探针显微镜,包括XPS等表面科学经典技术,使我成为了材料科学研究的材料研究,专注于表面科学的实力,使我具有独特的视角。我在表面科学和纳米镜检查中赢得的声誉得到了许多合作和邀请,可以在著名的会议和讲习班上讲话。
研究二氧化碳 (CO 2 ) 在改善建筑材料性能和性能方面的潜力。 研究粉煤灰基土聚物作为混凝土修复材料和钢筋混凝土结构的化学、物理和机械性能。 使用 SEM/EDX 映射元素、X 射线衍射 (XRD) 和 X 射线光电子能谱 (XPS) 技术对 OPC 和土聚物修复材料之间界面过渡区的元素分布进行成像。 评估粉煤灰基土聚物修复材料在现场应用中的性能和耐久性。 使用普通波特兰水泥 (OPC) 和土聚物粘合剂的钢筋混凝土结构设计之间的比较。 产品开发:1. 用于混凝土裂缝和剥落修复的土工碱活化溶液 (GAAS)。 2. 使用纳米技术废物进行有效的土聚物-土壤稳定化以供公用事业使用