摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
颅内出血(ICH)是一种威胁生命的医疗事件,尽管最佳护理,但与较差的结果有关。鉴于对ICH的早期发现和护理可以改善健康结果,因此需要一个可以迅速检测和加快治疗过程的分类系统。先前发表的工作采用了一种更传统的技术,包括许多对齐步骤,进一步分析,图像循环,手工图像分割和分类。这项研究工作检查了颅内出血检测问题,并开发了深度学习模型和转移学习模型,以减少识别出血的时间。对于ICH子类型的分类,我们基于转移学习模型开发了卷积神经网络。densenet121,Xception和CNN与使用许多评估标准进行比较,以确保模型的结果准确,并且做得很好。预先定制,该系统会带来令人印象深刻的结果,并且数据表明,X Ception比竞争模型更成功。用于ICH亚型的识别和分类,Xception模型用于最终输出。
摘要简介:异常的脑细胞包括脑瘤,它会导致严重的器官功能障碍,甚至导致死亡。这些肿瘤的大小、纹理和位置各异。诊断脑瘤的过程非常耗时,需要放射科医生的专业知识。脑瘤分为神经胶质瘤、脑膜瘤、垂体瘤和非肿瘤。随着患者数量和数据量的增加,传统方法变得成本高昂且效率低下。方法:研究人员开发了检测和分类脑瘤并优先考虑准确性和效率的算法。深度学习 (DL) 技术越来越多地用于创建能够精确诊断或分割脑瘤的自动化系统,特别是用于脑癌分类。这种方法支持在医学成像中使用迁移学习模型。提出的模型是对 Xception 模型组件的修改,通过添加大量参数来提高 Xception 模型的效率。结果:将提出的 Xception 模型应用于 Masoud Nickparvar 脑肿瘤 MRI 数据集,准确率为 99.6%,灵敏度为 99.7%,特异性为 99.7%,F1 得分为 99.9%。讨论:提出的模型的效率参数确保它是一种诊断脑肿瘤的有效模型。与其他模型的比较分析表明,提出的框架对于及时检测各种脑肿瘤具有很高的可靠性。结论:结果证实了我们提出的模型的有效性,与以前的模型相比,该模型在肿瘤检测方面获得了更高的整体准确率。因此,提出的模型被认为是专家诊断脑肿瘤的宝贵决策工具。
收到:2024年6月21日修订:2024年8月3日接受:2024年8月26日发布:2024年9月30日摘要 - 去年在几个领域中使用了图像处理技术,包括教育,研究,铁路和其他部门。CNN(卷积神经网络)通常被视为图片分类的最有效方法。这项研究包括使用CNN体系结构:Restnet50V2,Restnet152v2,Xception,IntectionV3和MobilenetV2的五种著名的图像处理算法。我们评估了Dehradun DataSet北阿兰奇大学的分类,该数据集有20个不同的部门照片进行分类。在一定的迭代之后,我们的主要目标是使用可用的硬件实现最佳的模型精度。为了评估绩效,我们使用了其他措施,例如准确性,召回和F1得分。调查证明了所有五种算法的特殊精度:Restnet50V2(98.88),Restnet152v2(99.10),Xpection(99.17),InceptionV3(99.2)(99.2)和MobiLENETV2(93.71)。由于其卓越的准确性,选择了X Ception方法进行数据培训,测试和验证。硬件资源,内存能力和数据多样性。这项研究阐明了CNN模型的性能,并帮助公司和大学选择更好的照片分类算法。这项研究还提高了机器学习和深度学习算法,以及它们在现实情况下的实际应用。
糖尿病性视网膜病(RD)是糖尿病的严重并发症,可能会损害视网膜并威胁视力。早期发现RD对于防止进一步的眼睛损害非常重要。为了增加这种早期检测,深度学习技术,尤其是CNN方法,已被广泛使用。本研究旨在在视网膜图像分类中实施和比较四种不同CNN体系结构的性能,即Resnet152v2,Xception,Denset201和InceptionV3,以检测RD。首先,将数据集视网膜图像分为感染RD的类别和不感染的类别。然后,使用培训数据开发和培训CNN模型以对图像进行分类。使用数据增强技术有助于增加模型的概括。训练模型后,使用单独的测试数据集进行测试以评估每个模型的性能。测试结果表明,Xception和Denset201在检测RD方面具有出色的性能,精度,精度,召回和F1得分达到96%。该评估的结果证实,深度学习技术,尤其是以CNN的形式,在支持医学诊断方面具有巨大的潜力,尤其是在检测复杂的眼睛(例如RD)方面。这些模型的使用可以为RD患者带来重大好处,从而可以更有效的早期文本和更及时的处理。抽象的糖尿病性视网膜病(DR)是糖尿病的严重并发症,可能会对视网膜造成损害并威胁视力。丹根·德米基安(Div),Penelitian Ini成员Kontribusi penting Dalam Pengembangan solusi otomatis untuk untuk诊断RD,Yang Dapat Mening-Katkan Perawatan kehatan kesehatan kesehatan kesehatan mata secara secara secara secara secara secara secara secara keseluruhan。早期发现RD对于防止进一步的眼睛损害非常重要。为了改善这种早期检测,深度学习技术,尤其是CNN方法已被广泛使用。本研究旨在在视网膜图像分类中实施和比较四种不同CNN体系结构的实现,即Resnet152v2,Xception,Densenet201和IntectionV3。首先,将视网膜图像数据集分为RD感染和非RD感染类别。然后,使用训练数据来开发和培训CNN模型以对图像进行分类。使用数据增强技术有助于改善模型的概括。训练模型后,使用单独的测试数据集进行测试以评估每个模型的性能。测试结果表明,Xception和Densenet201在检测RD方面具有出色的性能,精度,精度,召回和F1得分达到96%。此评估的结果证实,深度学习技术,尤其是以CNN的形式,在支持医学诊断方面具有巨大的潜力,尤其是在检测复杂的眼部疾病(例如RD)方面。使用这些模型可以为RD患者带来重大益处,从而实现更多效率的早期检测和更及时的治疗。因此,这项研究为RD诊断的自动解决方案的开发做出了重要贡献,这可以改善整体眼保健。
骨龄评估有多种用途。它可以帮助儿科医生预测生长、青春期开始、识别疾病,并评估缺乏适当身份证明的人是否是未成年人。这是一个耗时的过程,也容易出现观察者内差异,从而导致许多问题。本论文尝试通过使用不同的物体检测方法来检测和分割对评估具有解剖学重要性的骨骼,并使用这些分割的骨骼来训练深度学习模型来预测骨龄,从而改善和加快骨龄评估。使用了一个包含 12811 张婴儿至 19 岁人群的 X 射线手部图像的数据集。在第一个研究问题中,我们比较了三种最先进的物体检测模型的性能:Mask R-CNN、Yolo 和 RetinaNet。我们选择了性能最佳的模型 Yolo,以分割数据集中指骨的所有生长板。我们继续使用分割和未分割的数据集训练四种不同的预训练模型:Xception、InceptionV3、VGG19 和 ResNet152,并比较了性能。我们使用未分割和分割的数据集都取得了良好的结果,尽管使用未分割的数据集的性能略好。分析表明,通过增加腕骨、骨骺和骨干的生长板检测,我们可能能够使用分割数据集实现更高的准确率。性能最佳的模型是 Xception,使用未分割的数据集实现了 1.007 年的平均误差,使用分割的数据集实现了 1.193 年的平均误差。
猫型心肌病(HCM)是一种常见的心脏病,影响了所有猫的10-15%。带有HCM的猫表现出呼吸困难,嗜睡和心杂音;此外,猫HCM也可能导致猝死。在各种方法和指数中,射线照相和超声检查是猫HCM诊断的黄金标准。但是,仅使用射线照相就只能达到75%的精度。因此,我们使用231个猫(143 hcm和88 normal)的腹侧放射线图培训了五个残留体系结构(Resnet50V2,Resnet152,InceptionResnetV2,MobilenEtV2和Xception),并研究了用于诊断Finely Finely HCM HCM的最佳体系结构。为了确保数据的普遍性,X射线图像是从5个独立机构获得的。此外,测试中使用了42张图像。测试数据分为两个;在预测分析中使用了22片射线照相图像,并在评估窥视现象和投票策略的评估中使用了20个X射线照相图像。结果,所有模型的精度> 90%; RESNET50V2:95.45%; Resnet152:95.45; InceptionResnetv2:95.45%; Mobilenetv2:95.45%和Xception:95.45。此外,将两种投票策略应用于五个CNN模型; SoftMax和多数投票。因此,SoftMax投票策略在合并的测试数据中达到了95%的精度。我们的发现表明,使用残留体系结构的自动学习系统可以帮助兽医放射科医生筛选HCM。
摘要 - 本文提出了专门为自动驾驶汽车设计的高级车道保管援助系统。提出的模型将强大的Xeption网络与转移学习和微调技术相结合,以准确预测转向角度。通过分析摄像机捕获的图像,该模型有效地从人类驾驶知识中学习,并提供了对安全车道保持所需的转向角度的精确估计。转移学习技术允许模型利用从Imagenet数据集获得的广泛知识,而微型调整技术则用于根据输入图像来指导角度预测的特定任务来定制预训练的模型,从而实现最佳性能。微调是通过最初冷冻预训练的模型并仅训练前10个时期的完全连接(FC)层来开始的。随后,整个模型涵盖了主链和FC层,以进行进一步的训练。为了评估系统的有效性,对包括NVIDIA,MOBILENETV2,VGG19和InceptionV3在内的流行现有模型进行了全面的比较分析。评估包括基于损耗函数的操作准确性的评估,特别是利用了平方误差(MSE)方程。所提出的模型实现了训练和验证的最低损耗函数值,证明了其出色的预测性能。这种实际评估提供了对模式的可靠性及其有效协助行驶任务的潜力的宝贵见解。此外,通过对预设计的轨迹和地图进行广泛的现实世界测试进一步评估了该模型的性能,从而导致转向角度远离所需轨迹的最小偏差。关键字 - 行长辅助,自动驾驶汽车,X CEPTION,转移学习,微调,转向角度预测
抽象的视觉检查有缺陷的轮胎后期生产对于人体安全至关重要,因为故障轮胎会导致爆炸,事故和生命损失。随着技术的进步,转移学习(TL)在许多计算机视觉应用中起着影响的作用,包括轮胎缺陷检测问题。但是,自动轮胎缺陷检测很难有两个原因。首先是复杂的各向异性多纹理橡胶层的存在。第二,没有用于缺陷检测的标准轮胎X射线图像数据集。在这项研究中,使用来自全球轮胎公司的新数据集提出了基于TL的轮胎缺陷检测模型。首先,我们收集并标记了数据集,该数据集由3366个X射线图像和20,000张合格轮胎的图像组成。尽管数据集涵盖了15种由不同的设计模式引起的缺陷,但我们的主要重点是二进制分类以检测缺陷的存在或不存在。该具有挑战性的数据集分别分别为70%,15%和15%的培训,验证和测试。然后,对提出的数据集进行了调整,训练和测试的九个常见的预训练模型。这些模型是Xception,InceptionV3,VGG16,VGG19,Resnet50,resnet152v2,densenet121,InceptionResnetv2和MobilenetV2。结果表明,精细的VGG19,Densenet21和InceptionNet模型获得了与文献的兼容结果。此外,在召回,精度,准确性和F1分数方面,Xception模型优于比较的TL模型和文献方法。此外,它在测试数据集73.7、88、80.2和94.75%的召回,精度,F1分数和准确性的94.75%以及验证数据集73.3、90.24、80.9和95%的召回召回,精度,F1分数和精度分别实现。
冠状病毒病的当前诊断方法2019(Covid-19)主要依赖于逆转录聚合酶链反应(RT-PCR)。但是,RT-PCR是昂贵且耗时的。因此,必须开发一种准确,快速且廉价的筛选方法,以诊断Covid-19。在这项研究中,我们将图像处理技术与深度学习算法相结合,以增强胸部X射线(CXR)传感器图像的Covid-19鉴定的准确性。对比度限制的自适应直方图均衡(CLAHE)用于提高不清楚图像的可见性水平。此外,我们研究了我们的图像融合技术是否可以有效地提高七个深度学习模型的性能(Mobilenetv2,Resnet50,Resnet152V2,Inpection-Resnet-V2,Densenet121,Densenet201,densenet201和Xpection)。提出的特征融合技术涉及将原始图像的特征与受Clahe的图像的特征合并,然后使用合并的功能来重新训练,测试和验证深度学习模型,以识别CXR图像中的Covid-19。为了避免图像的发生不匹配现实并确保高模型稳定性,没有进行数据增强。这项研究的结果表明,提出的图像融合技术可以改善分类评估指标,尤其是在两级和三级分数中深度学习模型的敏感性。灵敏度是指模型正确检测感染的能力。将X受感受与所提出的特征融合技术相结合时,达到了这项研究的最高精度。在三级分类中,该方法的准确性为99.74%,五倍交叉验证的平均准确性为99.19%。在两类分类中,上述方法的准确性为99.74%,五倍交叉验证的平均准确性为99.50%。结果表明,具有深度学习算法的提议的图像处理技术具有非凡的概括。