摘要本文介绍了超高辐射模块化乘数的算法 - 硬件共同设计,用于高吞吐量模块化乘法。首先,为了加快模块化乘法的速度,我们使用一种新型的分段还原方法来利用超高的radix插入模块化乘法算法,从而减少了迭代和预计的数量。然后,为了进一步改善模块化乘法的吞吐量,我们设计了高度并行的模块化乘数体系结构。最后,我们使用Xilinx virtex-7 FPGA进行了并验证模块化乘数。实验结果表明,它可以在0.56 µs中执行256位模块化乘法,吞吐量速率高达4999.7 Mbps。关键字:模块化乘法,高吞吐量,超高radix分类:集成电路(内存,逻辑,模拟,RF,传感器)
摘要 本文提出了一种基于各层神经元值统计分布概率的分段线性 (PWL) S 型函数逼近方法,仅使用加法电路即可提高网络识别精度。首先将 S 型函数划分为三个固定区域,然后根据神经元值分布概率将每个区域中的曲线分割为子区域,以减少逼近误差并提高识别精度。在Xilinx 的FPGA-XC7A200T上对MNIST和CIFAR-10数据集进行的实验表明,所提方法在DNN、CNN和CIFAR-10上分别达到了97.45%、98.42%和72.22%的识别准确率,比其他仅使用加法电路的近似方法分别提高了0.84%、0.57%和2.01%。关键词:S形函数、概率、神经网络、分段线性近似
摘要 —OpenIPMC 是一款免费的开源软件,旨在实现智能平台管理控制器 (IPMC) 的逻辑。IPMC 是符合先进电信计算架构 (ATCA) 标准的电子板的基本组件,目前已被许多高能物理实验采用。IPMC 负责监控电路板的健康参数、管理其电源状态以及为远程客户端提供电路板控制、调试和恢复功能。OpenIPMC 基于 FreeRTOS 实时操作系统,设计为独立于架构,允许将其用于为各种微控制器设计的固件中。拥有完全免费和开源代码是此类软件的一个创新方面,使用户可以完全自定义。在本文中,我们介绍了 OpenIPMC 的功能和结构,以及它在 Xilinx Zynq UltraScale+ (ZynqUS+)、Espressif ESP32 和 ST Microelectronics STM32 架构上的示例实现。
本文介绍了一种测试台的开发,用于测量 Xilinx 的 Zynq UltraScale + FPGA 中使用的 16nm FinFET 的老化情况。在设置中选择并实施了环形振荡器 (RO) 漂移测量方法。然而,RO 电路不仅对老化敏感,而且对温度和电压也敏感。为了减轻对温度和电压的不良敏感性,我们安装了一个调节系统来控制 FPGA 的温度和内部电压,并根据温度和电压表征 RO 频率以应用后测量补偿。我们通过使用 GPS 信号作为时间参考改进了测量电路。进行了 1000 小时测试,测试温度为 (T FPGA = 100 ◦ C) ,测试温度为 (V FPGA = V nom + 25%),结果显示 RO 频率漂移明显低于 0.1%,测量精度为 0.9 × 10 − 4。
本文对不同入射角下 28 纳米块状商用现货 (COTS) Xilinx Artix-7 FPGA 的单粒子翻转 (SEU) 抗热中子辐射敏感性进行了实验研究。实验结果表明,配置 RAM (CRAM) 单元、触发器 (FF) 和块 RAM (BRAM) 上存在 SEU。还分析了多重事件 (范围从 2 位到 12 位) 的形状,以及它们对粒子束对设备表面的入射角的依赖性。还研究了 128 位和 384 位多重事件的可能形状,揭示了遵循字线的趋势。将前入射角的结果与 14.2 MeV 中子进行比较,表明该装置对两种辐照源的灵敏度存在相当大的差异。最后,使用名为 MUSCA-SEP3 的建模工具来预测该装置在相同环境条件下的灵敏度。获得的实验结果将以非常准确的方式与预测结果显示出良好的一致性。
1. 电源板(底部)具有标称和冗余电源输入选择,并为 FPGA 提供五条主电源轨。其他电源轨由另外两块板上的调节器提供。使用德州仪器的航天级电源组件。2. 包含 Xilinx ® KU060 FPGA 的 FPGA 板(中间)。PCB 占用空间可容纳商用部分、工业部分或耐辐射部分。使用工业级 FPGA。FPGA 周围有六个 Elara 连接器,用于承载 SpaceFibre 电信号。每个连接器提供四条 SpaceFibre 通道。两个连接器各承载一个四通道端口,其他四个连接器各承载两个双通道端口。3. 配置和清理板(顶部),用于配置和监控 KU060 FPGA。配置来自 EEPROM 或通过 SpaceWire 接口。EEPROM 可以通过 SpaceWire 进行编程。
摘要 - 在这项工作中,我们提出了超大等级密钥封装(Sike)机制的快速且富有效率的软件硬件实现。我们的软件硬件设计既可以实现软件的灵活性,又可以实现强烈计算硬件计算的有效性能。尤其是,我们的实施利用了以Xilinx FPGA为目标的新的且高度优化的硬件模块,用于添加,乘法和硬件软件控制。与一个小的RISC-V处理器结合,我们可以支持所有四个Sike参数集。在Virtex-7 FPGA上,此实现占3,492片,78个DSP和29 BRAMS,以对Sikep434,Sikep503,Sikep610,Sikep610和Sikep751在14.5、19.2、29.8、29.8和42.7 ms上进行封装和分解。尽管支持了所有四个参数集,但该设计具有文献中所有同级加速器的最佳区域时间产品。
快速傅里叶变换 (FFT) 广泛应用于各种信号处理算法,这些算法通常需要高吞吐量和可配置的 FFT 大小。本应用说明展示了 Xilinx ® Versal™ AI Core 设备中 AI 引擎阵列上的高效 FFT 实现。所提出的架构利用 AI 引擎阵列的分组交换功能,将 4096 个输入样本分发到四个 AI 引擎,在其中执行 512 点或 1024 点 FFT,然后使用另一个 AI 引擎根据控制字对 2048 点和 4096 点 FFT 的数据进行后处理,该控制字逐块指定 FFT 大小和 FFT/IFFT 模式。仿真结果证实,5x2 AI 引擎阵列中的两个 FFT 模块实现了 3.7 GSPS 的吞吐量,足以服务于 24-32 个 100 MHz 带宽的天线。
Apissys建于Savoy地区(靠近瑞士边境),成立于2009年,是非常高速数据转换(HSDC)和信号和图像处理解决方案的欧洲领导者,迎合了空间,国防,医疗和工业领域,以覆盖诸如电子战,Lidar-ladar-ladar,ladar-ladar,Phase Epaper and Communay and Bodeband和Brodane and and and and and and and and and and and and and and and and and and and and and and and separay and Bodass and and and and and and and and and and and。具有无与伦比的表演,Apissys基于Xilinx Ultrascale+ FPGA的OpenVPX解决方案为客户提供了用于宽带ESM,DRFM或AESA雷达的前沿技术。除了基于FMC,PCI Express,VPX或XMC等国际标准的COTS产品外,Apissys还可以使用其团队的丰富经验和知识来设计自定义解决方案。Apissys还可以使用自己的产品以及第三方董事会和子系统提供系统集成。该公司在欧洲,印度,以色列,美洲和日本为其一级国防和太空客户提供服务。
概述 • 智能视频制导传感器 (SVGS) 专为资源受限系统(例如立方体卫星、小型卫星、小型着陆器)而设计,是高级视频制导传感器的一种低质量、低成本 COTS 实现,专为会合近距操作和捕获 (RPOC);进入、下降和着陆 (EDL)、舱内导航和 GPS 拒绝导航而设计。 • 使用摄像头捕获图像并使用摄影测量技术分析目标航天器上发光标记的模式,以确定范围和相对方向(6DOF 状态)。 • 可用于业余级(例如 Raspberry Pi、Android)和高端平台(例如 Xilinx US+MPSoC)。 • 在 Linux、FreeRTOS 和 Android 中的软件实现。 • 传感器范围可根据目标配置定制。 • 预计 SVGS 飞行装置的 SWaP: – 尺寸:8.5x6.5x4.5cm – 重量:250g – 功率:5W 摄像头 + 5W 目标