材料:铌酸锂/硅 波长范围:900 至 1700 nm 输出:保偏 光输入电平:+18 dBm 最大调制器偏置模式:Q+ 线性操作 消光比:25 dB 操作频率范围:DC 至 20GHz S21 带宽:3 dB,17 GHz 典型 IIP3 @ 10 GHz:25 dBm 典型输入 RF 电压:25 dBm 最大 RF 回波损耗:> 10 dB@ 20 GHz 工作电压(Vπ):< 3.5 V 光纤类型:PANDA 输入和输出 RF 连接器:SMA 电连接器:6/9 针用于控制和供电。尺寸:不超过 150 毫米 x 30 毫米 x 25 毫米。工作温度:-55°C 至 +75°C 对原型/开发技术的未来期望
定义 空气比释动能 - dE tr 除以 dm 的商,其中 dE tr 是空气体积元素中光子释放的所有电子的初始动能之和,dm 是该体积元素中的空气质量。空气比释动能的 SI 单位是戈瑞 (Gy)。光束质量 - 用于指具有特征半值层并由恒定电位千伏产生的特定 X 射线束。校准 - 通过与适当的国家标准进行比较来表征剂量计或测量仪器的响应的过程。校准系数 - 没有电离室时的空气比释动能与电离室中该辐射产生的电荷的商,以 Gy/C 为单位表示。校准因子 - 在没有电离室的情况下空气比释动能或曝光量与电离室的静电计读数之比(无量纲)。有效能量 - 具有与所讨论光谱相同半值层的单能 X 射线束的能量。曝光量 - 曝光量 (X) 是 dQ 除以 dm 的商,其中 dQ 是当所有电子完全停止在质量为 dm 的空气中时,在空气中产生的所有同号离子的电荷之和。曝光量的 SI 单位是库仑每千克 (C/kg);特殊曝光量单位伦琴 (R) 等于 2.58E-4 C/kg。半值层 - (HVL) 作为光束衰减器添加的指定材料的厚度,该衰减器将空气比释动能速率降低至未衰减光束空气比释动能速率值的一半。均匀性系数 - (HC) 第一个半值层与第二个半值层的比率。监测仪器 - 用于监测辐照期间空气比释动能速率稳定性的仪器。四分之一值层 - (QVL) 作为光束衰减器添加的指定材料的厚度,该衰减器将空气比释动能速率降低至未衰减光束空气比释动能速率值的四分之一。第二个半值层 - 四分之一值层和半值层之间的差值。X 射线单元 - 由高压发生器、X 射线管和 X 射线控制器组成的系统。
从一个完美的晶格中进行的弹性散射:X射线是由电子弹性散射的,该电子被称为Thomson散射。在此过程中,电子在传入光束的频率下像赫兹偶极子一样振荡,并成为偶极辐射的来源。与上述两个非弹性散射过程相比,X射线的波长λ保守用于汤姆森散射。是X射线散射中的Thomson成分,可以通过X射线衍射在结构研究中使用。材料由原子制成。了解原子如何排列成晶体结构和微观结构是我们建立对材料合成,结构和特性的理解的基础。在日常工作中,我们谈论了晶体内一系列平行平面的X射线反射。这些平面的方向和平面间距由三个整数H,K,L称为Miller指数。一组带有指数h,k和l的平面在h切片中切割了单位单元格的A轴,k切片中的b轴和l切片中的c轴。零表示平面平行于相应的轴。(例如(220)平面将A轴和B轴切成两半,但与C轴平行。确定H,K和L索引编号时使用的程序如下:
目的 本程序旨在描述使用校准服务所需的四个主要 x 射线标准自由空气电离室测量空气比释动能所涉及的所有步骤,这些校准服务列为 46011C [1]。还描述了测试高质量静电计 46030S 的程序。范围 测量 x 射线的仪器的校准和辐照是根据物理量空气比释动能进行的。本程序解释了为辐射探测器建立校准系数(或因子)的过程。通过将仪器与 NIST 主标准进行比较来进行校准,该标准包括四个 x 射线自由空气室。参考文件 国际标准化组织 ISO/IS 4037-1:1996 用于校准剂量计和剂量率计以及确定其响应作为光子能量函数的 X 和伽马参考辐射 - 第 1 部分:辐射特性和产生方法 电离辐射咨询委员会 (CCRI) BIPM,辐射质量,电离辐射咨询委员会 (CCEMRI)(第 I 部分),1972,2,R15。美国国家标准与技术研究所 NBS 特别出版物 250-16 X 射线和伽马射线测量仪器的校准 NIST 特别出版物 250-58 X 射线和伽马射线测量仪器的校准 NIST 校准服务用户指南 1998 NBS 手册 64 自由空气电离室的设计 NBS 手册 78 国际放射单位和测量委员会报告 NIST 特别出版物 811 国际单位制 (SI) 使用指南 NIST 技术说明 1297 评估和表达 NIST 测量不确定度的指南 记录 实验室数据手册 活页夹
1 GE 检测技术公司,俄亥俄州辛辛那提;2 GE 检测技术公司,德国阿伦斯堡 摘要:航空航天业长期以来一直希望以非破坏性方式确定材料和结构的质量和完整性。在飞机产品和部件的整个生命周期中,X 射线检测技术发挥着重要作用,需求不断增加。对低成本方法和解决方案的需求不断推动着对 X 射线检测的需求,这些方法和解决方案具有更高的可靠性、灵敏度、用户友好性和高操作速度,并且适用于新材料和结构。本演讲将总结航空航天业的射线照相和射线透视 X 射线检测技术的现状,同时展示 X 射线检测解决方案如何满足这些要求。此外,还将确定新兴的检测挑战并回顾新兴的 X 射线检测技术。简介:现代飞机,无论是商用飞机还是军用飞机,都是为在长生命周期内有效运行而设计的。安全和性能要求要求在飞机的整个生命周期内对飞行关键部件和组件进行广泛的检查。临界缺陷尺寸的典型标准通常由经验验证的缺陷增长模型和循环疲劳期间的影响确定。这既适用于制造过程中进行的检查,也适用于定期检查
X射线Ptychography的未来(一种连贯的衍射成像方法)有望实现的分辨率和实验效率,同时探测了越来越复杂的样品的特征。这是通过复杂的成像方法启用的,结合了高度优化的硬件,软件和过程。在本文中,解决了X射线ptychography实验的几个方面,强调了通过使用多个光束实现的增强的多功能性和有效性。从对纳米化的全面理解开始,讨论了聚焦X射线光学的生产。具体而言,开发了直接作品的岩性过程,并描述了其细节,特别强调了在50 kV加速度电压下在化学上半弹性抗性的情况下进行电子束光刻。此过程既多功能又精确,最终促进了菲涅尔区板(FZP)的制造。因此,论文报告了几个并联的几个FZP的应用,用于生成多个X射线梁以执行Ptychography。特别是研究了对标准Ptychographic方法的新型扩展。对多光束X射线PTYChography的研究始于紧密间隔的FZP,以线性阵列排列在同一芯片上,模拟和推进了先前关于该主题的研究,并证明了自制硬件的准备就绪,以实现更复杂的实现。最值得注意的是,FZP彼此之间的接近48 µm,并且最多可以使用三个梁,从而将视场(FOV)扩展了三倍。接下来,引入了一种新颖的设置,在多光束X射线ptychography的背景下促进了适应性的概念,这要归功于堆叠和机动的FZP。在测量之间将焦点光学元件移动的可能性赋予上述设置前所未有的多功能性。对于实验,样本更改或检测条件的每个新迭代,光学元件不必重新设计。足以使用各自的电机并将设置适应新的测量值。金纳米晶簇用各种梁的间距成像,从而在样品上同样间隔区域进行成像,并将FOV扩展到两个倍。这种设置的成功导致其在更复杂的测量中实现,最终导致表现出同时的多光束和多块Ptychography,这两个从未被放在一起。两层样品,与单光束Ptychographichographic测量值相比,层到层的分离范围从1400 µm降至100 µm,分辨率没有损害。最后,FZP的聚焦作用与策划
石墨和Li Metal之间的超密集相对于锂离子电池(LIB)和石墨插入化合物(GICS)的研究很重要。然而,由于有关C 2 li的有限信息以及将C 2 li与C 6 li区分开的困难,用于合成C 2 li的详细方法仍然未知。因此,我们在高压和高达10 GPA和400℃的高压下,在样品上进行了原位X射线衍射测量。我们采用了两种类型的C 2 li样品;一个是C 6石墨粉和Li金属(C 6 + 3 li)的混合物,另一个是C 6 li和li金属的混合物,其中C 6 Li是通过在Libs中发生的电化学放电(还原)反应制备的。根据C 6 Li或C 2 Li的001衍射峰考虑D值的变化,C 6 Li + 2Li适用于合成C 2 LI,尽管应除去用于电化学反应的非液压电解质,以避免在较低的C 12 LI和C 18 LI期间避免结构转换,以免使用结构转换。这些发现铺平了迈向合成C 2 li的方法的道路,该方法可能会增加LIB的能量密度并使用新颖的物理和电子特性建立GIC。
Laura M de Kort,Masoud Lazemi,Alessandro Longo,Valerio Gulino,Henrik P Rodenburg等。使用X-Ray Raman谱学解密了纳米固体电解质中界面诱导的高LI和Na离子电导率的起源。高级能源材料,2024,10.1002/aenm.202303381。hal-04411755
抽象的X射线衍射(XRD)是表征电杂色材料薄膜的必不可少的工具。但是,对于初学者而言,由于操作模式和测量类型的数量以及对结果模式和扫描的解释,首先可能是一种艰巨的技术。在本教程文章中,我们为使用XRD进行首次测量的薄膜工程师/科学家提供了基础。我们简要介绍了该仪器的衍射原理和描述,详细介绍了相关的操作模式。接下来,我们引入了薄膜表征必不可少的五种测量值:2次扫描,放牧的含量扫描,摇摆曲线,极图和方位角扫描(或ϕ扫描)。提供了选择适当的光学元件,安装和对齐样品以及选择扫描条件的实用准则。最后,我们讨论了数据分析的一些基础知识,并就数据呈现提供了建议。本文的目的是最终降低研究人员进行有意义的XRD分析的障碍,并在基础上建立基础,发现现有文献更易于访问,从而实现了更高级的XRD调查。
3D冷冻打印(3DFP)将按需滴落(DOD)喷墨打印与冷冻铸造相结合,以制造具有定制几何形状的轻质多功能气凝胶。冷冻铸造是一种高效且易于实施的方法,能够为许多不同的应用制造多孔海绵状结构。该过程通过控制制造条件和冷冻动力学来定制最终产品的微观结构(即孔隙形貌、排列、平均尺寸分布等)。它与DOD打印的结合提供了设计宏观结构的能力,而无需依赖模具,正如报道的由石墨烯、银纳米线和其他纳米复合材料制成的3D冷冻打印气凝胶一样。在本文中,我们使用市售的胶体二氧化硅墨水进行了原位X射线成像,以了解3DFP中的内部过程动态。我们研究了具有以下层次结构的3DFP过程:首先,单个液滴;然后,从液滴聚结中获得均匀的线条;最后,逐层沉积三条连续的线条。借助 X 射线成像,通过观察印刷线尖端后的冻结前沿内部,现场显示了材料沉积和冻结速率之间的平衡的重要性。通过观察到的从下层到上层的冰晶,还显示了基板温度对消除不良界面边界的影响。