摘要:使用吸附的单链DNA(ssDNA)的单壁碳纳米管(SWCNT)作为传感器进行研究,以研究生物系统,其潜在应用从临床诊断到农业生物技术。唯一的ssDNA序列使SWCNT有选择地响应靶向分析物,例如识别神经调节剂多巴胺等(GT)N -SWCNT。尚不清楚SWCNT表面上的ssDNA构象如何有助于功能,因为观察结果仅限于脱水条件下的计算模型或实验,这与应用纳米传感器的水性生物环境有很大不同。我们通过X射线散射干涉测量法(XSI)来展示一种直接测量SSDNA几何形状的模式,该模式利用了AuNP标签产生的干扰模式,该模式由AuNP标记在SWCNT表面上与SSDNA结合在一起。我们使用XSI来量化两个(GT)N ssDNA低聚物长度(n = 6,15)的不同表面吸附的形态(n = 6,15),它们在多巴胺感应的背景下用于SWCNT,并测量SSDNA构象变化作为离子强度和多巴胺相互作用的功能。我们表明,与更长的(GT)15低聚物相比,较短的低聚物(GT)6沿SWCNT轴(SSDNA间距离为8.6±0.3 nm)采用更周期性的有序环结构(SSDNA间距离为8.6±0.3 nm)(最有可能的5'-5'-5'至14.3±1.1 nm)。在分子识别期间,XSI揭示了多巴胺在SWCNT表面同时引起吸附ssDNA的轴向伸长和径向收缩。■简介我们使用XSI探测聚合物功能化SWCNT的溶液 - 相形态的方法可以应用于感应机制的见解,并为基于纳米粒子的传感器提供了未来的设计策略。
X射线源在强度和时间域都继续前进,从而开放了分析物质结构和特性的新方法,前提是可以有效地记录所得的X射线图像。从这个角度来看,我们关注像素区域X射线检测器的特定局限性。尽管像素区域X射线检测器也在近年来进步,但许多实验仍然受到限制。特别是,需要以GHz速率获取连续图像的检测器;在同一图像中以数百kHz的帧速率在同一图像中可以准确测量单个光子和数百万光子的检测器;并有效地捕获了非常硬X射线的图像(20 keV至数百keV)。最新检测的数据量和数据速率超过了大多数实用的数据存储选项和读取带宽,因此需要在线处理数据或代替全帧全帧读数。
汽车正在变得非常复杂和连接的机器,迅速发展成为智能的自动驾驶汽车。它是高级的,基于技术的创新,可大大提高汽车功能,实现自我诊断,改善驾驶员体验并提供电动和近自动驾驶功能。如今,与仅在“引擎盖下”相比,汽车性能在提供舒适,实时的驾驶员互动和增强安全性的特征上排名较多。具有Wi-Fi,蓝牙,语音控制,加热转向轮,按摩座椅,盲点意识,反碰撞(汽车和行人)警告,360度摄像头,自我贴花,自动制动器,甚至半自主驱动器在新自动摩托车排名中迅速变得更加重要的因素。
在国家氢能和燃料电池技术创新的背景下,弗劳恩霍夫 ISE 扩大了其研发基础设施,运营着全球为数不多的高温近常压 X 射线光电子能谱 (HT-NAP-XPS) 设施之一,从而为电解和燃料电池系统以及基于氢的 Power to X 概念的发展树立了另一个里程碑。EnviroESCA 设备为化学和加工工业等合作伙伴提供了更广泛的特性分析范围。该系统能够在近常压条件下研究几乎所有表面的化学状态。
胰腺癌是一种高度侵略性的恶性肿瘤,近年来变得越来越普遍。尽管在包括手术,放射疗法,生物疗法和靶向治疗在内的强化治疗方式方面取得了进步,但胰腺癌患者的总生存率并没有明显改善。这可能归因于阴险的发作,未知的病理生理学和疾病预后不良。因此,必须识别和开发对胰腺癌的更有效和更安全的治疗方法。肿瘤免疫疗法是手术,放疗和化学疗法后的新的和第四个抗肿瘤疗法的支柱。近年来对各种恶性肿瘤的免疫疗法的使用取得了显着进步。在治疗胰腺癌方面,也取得了突破。本综述描述了免疫检查点抑制剂,癌症疫苗,收养细胞疗法,溶瘤病毒和基质止血疗法的进展,用于治疗胰腺癌。同时讨论了一些新的潜在生物标志物和胰腺癌的潜在免疫疗法组合。也已经阐明了各种免疫疗法的分子机制,并突出了它们的临床应用。还讨论了与免疫疗法和提议克服这些局限性有望的拟议策略相关的挑战,目的是为胰腺癌的免疫疗法提供新的见解。
摘要 — 氧化镓 (Ga 2 O 3 ) 是一种新兴的超宽带隙半导体,在辐射探测中的应用引起了广泛关注。在本文中,我们利用金属有机化学气相沉积 (MOCVD) 在蓝宝石上生长的高电阻率非故意掺杂 (UID) ε-Ga 2 O 3 薄膜制造了超快 X 射线探测器。该探测器采用横向金属半导体金属 (MSM) 结构,在 100 V 时表现出 < 2 nA 的低暗电流,在 40 V 和 X 射线剂量率为 0.383 Gy/s 时其灵敏度高达 28.6 nC/Gy 或 ∼ 1 . 0 × 10 6 nC/(Gy · cm 3 )。在切换 X 射线照明下观察到探测器稳定且可重复的瞬态响应。此外,该探测器实现了全宽50 ns的脉冲X射线探测,其时间分辨率约为7.1 ns。这些结果表明,MOCVD生长的高电阻率UID ε-Ga 2 O 3薄膜在超快X射线探测方面具有巨大的潜力。
1米兰大学物理系,经Celoria 16,I-20133 I-20133意大利米兰; guglielmo.mastroserio@gmail.com 2defisíca,Eebe,Eebe,UniversityCitycnica de Catalunya,AV。Eduard Maristany 16, 08019 Barcelona, Spain 3 National Astro Phyica Institute, Astronomical Observatory of Brera, Via E. Bianchi 46, 23807 Merate (LC), Italy 4 Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford Ox1 3rh, UK 5 Inf-Astronomical Observatory of Rome, via Frascati 33, I-00076,Monte Porzio Catone(RM),意大利6个Inf-ipps,通过Del Fosso del Cavaliere,100,00133 Rome,意大利罗马7 INAF,INAF,空间和宇宙物理Astro哲学研究所,通过U.Eduard Maristany 16, 08019 Barcelona, Spain 3 National Astro Phyica Institute, Astronomical Observatory of Brera, Via E. Bianchi 46, 23807 Merate (LC), Italy 4 Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford Ox1 3rh, UK 5 Inf-Astronomical Observatory of Rome, via Frascati 33, I-00076,Monte Porzio Catone(RM),意大利6个Inf-ipps,通过Del Fosso del Cavaliere,100,00133 Rome,意大利罗马7 INAF,INAF,空间和宇宙物理Astro哲学研究所,通过U.La Malfa 153,I-90146意大利巴勒莫8号天体物理与太空科学中心(CASS),纽约大学阿布扎比大学,阿布扎比大学,邮政信箱129188,阿布扎比,阿联酋9号,捷克捷克大学天文学研究所 e-38205 La Laguna, Tenerife, Spain 11 Department de Astrofísica, Universidad de la Laguna, E-38206 La Laguna, Tenerife, Spain 12 Tor Vergata University of Rome, Via della Research Scientifica 1, i-00133 Rome, Italy Sapienza University of Rome, Piazzale Aldo Moro, 5, i-00185 Rome, Italy 14马萨诸塞州马萨诸塞州理工学院的MIT Kavli天体物理学研究所,剑桥,但02139,使用Cagliari的15 INAF-ASTRONSORALICAL OBServatory,通过Della Scienza 5,I-09047,I-09047,Selargius(CA),Selargius(CA),ITALY ITALY研究,Itliari,Sp Monserriari,Sp Monserrato 0.7 7.77.77。意大利太空科学研究所(ICE,CSIC),UAB校园,Carrer de Can s / n,08193,西班牙巴塞罗那,18学院,18860年,巴塞罗那Castelldefels(Barcelona),Spain 19号 Palermo, Italy 20 Irap, University of Toulouse, CNRS, UPS, CNES, 9, Avenue du Colonel Roche BP 44346 F-31028 Toulouse, Cedex 4, France 21 Department of Physics & Astronomy, Butler University, 4600 Sunset Avenue, Indianapolis, in 46208, uses 22 Department of Physics and Astronomy, University of Southampton, SO17 1BJ,英国收到2024年8月9日; 2024年11月15日审核员;于11月28日接受2024;出版了2025 Janogy 3
关键词:机制,X射线散射,疲劳,应变,脱位阐明钢的氢含量机制是因为可以一次激活多种机制或甚至可能需要协同的共同存在激活的事实,这使钢的氢含量机制变得复杂。一些领先的氢化氢提议机制包括氢增强的脱粘(HEDE),氢增强的局部可塑性(帮助)机制和纳米玻璃体合并机制(NVC)。在HEDE中,一旦氢浓度达到临界浓度,氢在高三轴应力位置的积累会导致Fe-FE键的衰弱。在帮助中,引入氢气会影响Fe格子中位错的行为,通常会增强钢框架中的脱位迁移率。在NVC中,预计氢会导致空缺的稳定和促进(“纳米级空隙”)团聚。对这些机制的完全理解,它们与疲劳特性的关系以及它们相互作用的相互作用需要一次测量,能够一次探测所有三种机制。在这里,我们同时提出高能X射线衍射(HEXRD)和小角度的X射线散射(SAXS)测量,在氢气中钢裂纹的原位疲劳期间。HexrD测量值探测HEDE并通过确定应变密度的确定; SAXS测量通过测定纳米孔尺寸分布的NVC。 ,我们将在空气和氢气中生长的裂纹尖端之前提出应变,脱位密度和孔径分布。HexrD测量值探测HEDE并通过确定应变密度的确定; SAXS测量通过测定纳米孔尺寸分布的NVC。,我们将在空气和氢气中生长的裂纹尖端之前提出应变,脱位密度和孔径分布。我们将在帮助,HEDE和NVC机制的背景下讨论空气中在空气中和氢中生长的裂纹尖端之间的差异。
X射线首先是由W. Roentgen博士在德国于1895年发现的,目前已在包括物理,工业和医学诊断在内的广泛领域中使用。X射线应用的检测器范围跨越了一个广泛的范围,包括A-SI检测器,单晶检测器和复合探测器。有很多类型的检测器,特别是由SI单晶制成的。应用包括牙科X射线成像和医疗设备领域中的X射线CT(计算机断层扫描),以及对行李,食品和工业产品的无损检查;物理实验;等等。在低能X射线区域中称为软X射线区域,从几百eV到约20 keV,使用了直接检测器,例如Si Pin Photodiodes,Si APD和CCD区域图像传感器。这些检测器提供了高检测效率和高能量分辨率,因此用于X射线分析,X射线天文观察,物理实验等。由于物体的渗透效率很高,因此在工业和医疗设备中使用了高于软X射线的硬X射线区域。闪烁体检测器在这些应用中广泛使用。这些检测器使用闪烁体将X射线转换为可见光,并检测到可见光以间接检测X射线。尤其是在医学领域,使用具有较大光敏区域的X射线检测器的数字X射线方法已成为主流,取代了传统的基于胶片的方法。对于X射线探测器,Hamamatsu提供SI光电二极管,SI APD,CCD区域图像传感器和CMOS区域图像传感器,平板传感器等。在非破坏性检查中,双能量成像允许通过同时检测高能量和低能X射线来捕获深色调的图像。
许多上述系统可以以颗粒物质的形式存在,其中诸如形态,布置,组成和孔隙率等参数控制其功能特性。颗粒可以表现出内在的内部孔网络。另外,以聚集的形式或填充成颗粒,柱或反应时,会从其填料结构中创建其他颗粒孔隙空间。当将这些不同的孔隙空间组合在一起时,会出现分层孔系统,可以根据运输,反应动力学或动态吸附来量身定制以提供增强的性质。[3,5,14]评估粒子和孔统计的评估,例如粒子和孔径,互连性,折磨或封闭/开放式孔隙率是表征和随后优化此类材料的关键。单个颗粒,它们作为功能结构的团聚形式以及组合的颗粒内和颗粒孔隙空间通常延伸到几个长度尺度上。内部孔的范围从微(<2 nm)到介孔(2 - 50 nm)的状态,直至较大的大孔(> 50 nm),而颗粒间孔通常是较大的大孔。[14]单个颗粒的大小只有几nm到几十µm,它们的团聚和包装结构通常是宏观尺寸的。[5]难度是对所有必要的,函数确定的特征的完整评估,仅使用一种3D表征技术就无法执行。