放射诊断是一种利用X射线电离辐射进行诊断而无需手术的医疗程序。X射线将被发射到物体上,穿透物体的X射线束将成像在X射线胶片上或处理成数字对象。除了具有许多好处之外,在执行X射线照射操作时剂量错误是非常有害的,无论是对患者、操作员、技术人员还是X射线机本身而言。当剂量低于控制面板上设置的剂量时,结果将不同且难以诊断,因此必须重复照射,反之亦然,如果剂量过高,患者也会受到过量的辐射,并且产生的图像是黑色的,尤其是对于光束-X常规而言。此外,过量剂量的X射线辐射(电离)会导致人体器官和体液的软组织电离,从而导致细胞损伤、基因突变、自由基形成、癌细胞等。在放射学中,图像质量是诊断有效性的标准。
软X射线断层扫描(SXT)可以实现完全水合,低温保存的生物样品的三维(3D)成像,揭示了超微结构的细节,而无需染色,嵌入或切片。传统上仅在同步基因设施上可用,激光驱动的等离子源的最新进展导致了紧凑的软X射线显微镜(例如SXT-100)的发展。SXT-100将成像分辨率降低到54 nm全螺距,在30分钟到两个小时内获得了断层图。SXT-100与落叶显微镜整合在一起,通过桥接荧光和电子显微镜来促进相关工作流,同时保留玻璃化样品的结构完整性。我们通过各种用例演示了SXT-100的功能,包括成像Euglena Gracilis,酿酒酵母酵母细胞和哺乳动物细胞中的纳米颗粒。相对较短的断层图采集时间,软X射线断层扫描的几乎没有破坏性的性质以及其定量成像功能强调了其作为高级生物成像的强大工具的潜力。未来的发展有望增强吞吐量和更深入的整合,并与新兴的相关成像方式以及包括组织在内的各种样本类型。
基于空腔的X射线自由电子激光器(CBXFEL)是完全相干X射线源开发的未来方向。cbxfels由一个低射精的电子源,一个带有几个失调器和chicanes的磁铁系统以及一个X射线腔。X射线腔存储并循环X射线脉冲,以与电子脉冲重复相互作用,直到FEL达到饱和。CBXFEL腔需要低损坏波前的光学组件:接近100%的反射性X射线钻石钻石bragg反射晶体,远对偶联设备,例如薄钻石膜或X射线膜,以及无X射线光栅,以及不含焦点的聚焦元素。在Argonne国家实验室,SLAC国家加速器实验室和Spring-8的协作CBXFEL研究与开发项目的框架中,我们在这里报告了CBXFEL腔的X射线光学组件的设计,制造和表征,包括高度反射性的钻石晶体液体,包括钻石晶体的薄膜和薄膜液体,包括imondivelivity单色。所有设计的光学组件都在高级光子源上进行了充分表征,以证明其对CBXFEL腔应用的西装。
摘要在本文中,我们提出了一种可移植的多机器人成像平台的应用,称为Radalyx,具有CT(计算机断层扫描)检查功能。radalyx配备了6关节机器人臂,可容纳特定成像模块。对于X-Ray成像,Radalyx的标准配置包括两个机器人。一个机器人固定X射线管,另一个机器人持有检测器。机器人上的集成成像工具允许将检测器和X射线管定位在被扫描的对象周围。根据样本量和形状,机器人执行预编程的运动,捕获随后将其处理为2D或3D图像的X射线投影。定位灵活性可以以多个角度(“任意路径CT”)具有新的扫描轨迹。radalyx具有精确校准且可重复的几何精度,进行CT和横向合成扫描以及常规的2D射线照相扫描,从而导致空间分辨率高达60 µm。机器通过使用光子计数检测器克服了常规CT系统的局限性,该检测器在分辨率,灵敏度,动态范围,降低降噪和光谱成像方面具有益处。radalyx允许将多个扫描机器人集成到几个独立和可移动站。电台可以任意定位在田地中,并通过几何校准以启用扫描模式,例如X射线传输甚至单面方法,例如X射线后散射。此外,radalyx可通过其他成像方式(例如激光分析和激光激光超声波)扩展,从而提供了各种材料的互补检查功能。radalyx正在改善成像方法的适用性,以在检查对象和检验不可行或仅受到限制的更广泛的测试对象和字段中。
类型或业务 本地 一般 封闭 开放 AG -SF Mu~tl• w •• , .- .- ... - .. ~ ...Buslness.- -Business .工业 .lndus.trllli .w _._ Fllmuv Liveslock Auction sP.e;>.:.Sale Barns SF 1 Lake De\'elopments SP,ex.for Recreation SF I I.:argeAnimll!SP.EX.. " X sP.ex..Hospitality SF I Massagers and Public sP.ex.Baths'
高能 X 射线探测器 (HEX-P) 是 NASA 提出的一项探测器级任务,它将高角分辨率与宽 X 射线带通相结合,为解决未来十年的重要天体物理问题提供了必要的能力飞跃。HEX-P 通过结合经验丰富的国际合作伙伴开发的技术实现了突破性的性能。为了实现科学目标,有效载荷由一套共线 X 射线望远镜组成,旨在覆盖 0.2-80 keV 带通。高能望远镜 (HET) 的有效带通为 2-80 keV,低能望远镜 (LET) 的有效带通为 0.2-20 keV。HEX-P 将发射到 L1 以实现高观测效率,带通和高观测效率的结合为广泛的科学服务于广大社区提供了强大的平台。基线任务为 5 年,其中 30% 的观测时间用于 PI 主导的项目,70% 用于一般观察 (GO) 项目。一般观察项目将与 PI 主导的项目一起执行。
制造商提供的透视或射线照相,并使用一组与该模式唯一关联的技术因素或其他控制设置进行选择。可以通过单个控件的操作来选择该模式的不同技术因素和控制设置集。不同操作模式的示例包括正常透视(模拟或数字)、高级控制透视、电影射线照相(模拟或数字)、数字减影血管造影、使用透视图像接收器的电子射线照相和光点记录。在特定操作模式下,影响空气比释动能、AKR 或图像质量的某些系统变量,例如图像放大率、X 射线场大小、脉冲率、脉冲持续时间、脉冲数,
摘要 过去十年,X 射线技术取得了非常迅速的进展。可用源的亮度和相干性显著提高。本报告特别关注所谓的“台式”X 射线激光源的发展、强超短光脉冲高阶谐波的产生以及软 X 射线光学的进展。这些技术相结合开辟了计量和研究的新领域,它们还大大缩小了曾经需要加速器大小源的实验,从而使这项工作更广泛地应用于工业和小规模科学。这很可能导致更广泛地采用 X 射线技术,特别是那些使用相干 X 射线的技术。更具推测性地,讨论了与核能级相互作用的可能性。穆斯堡尔能级具有高能量和非常高的品质因数,因此可能用作 X 射线频率参考;实现这一点需要 X 射线技术和计量技术的进一步显著进步。
航空电子设备利用半导体、印刷电路板组件 (pcba) 和锂离子电池等组件,这些组件有助于在小巧精致的封装中提供非凡的创新和功能。预测显示,航空电子设备市场将从 2019 年的 685 亿美元强劲增长至 2024 年的 869 亿美元。增长归因于航空电子设备的先进性推动了新设计、新功能和新连接,从而改善了飞机运行,同时提高了安全性,例如防撞系统和卫星导航。这些好处伴随着巨大的责任,因为航空电子设备在飞机正常运行中起着至关重要的作用。因此,如今的成功飞行在很大程度上取决于航空电子组件的质量,通常是微观层面上不可见元素的质量。在整个航空业中,航空电子设备的影响是巨大而普遍的。
Yao, Y.、Chan, H.、Sankaranarayanan, S.、Balaprakash, P.、Harder, RJ 和 Cherukara, MJ (2022)。AutoPhaseNN:3D 纳米级布拉格相干衍射成像的无监督物理感知深度学习。npj 计算材料,8(1),1-8。