作者注:为《货币政策回应》准备了一份初步报告,该书对大流行后通货膨胀的响应,由比尔·英语,克里斯汀·福布斯和Ángelubide编辑(伦敦和巴黎:经济政策研究中心:2024年)。本文基于Pierre Aldama,Claire Le Gall和法国的HervéLeBihan的特定国家作品; Nakamura的Koji Nakano,Mitsuhiro Osada和日本Hiroki Yamamoto;乔纳森·哈斯克尔(Jonathan Haskel),乔什·马丁(Josh Martin)和伦纳特·布兰特(Lennart Brandt)的英国;比利时的格雷戈里·德·沃尔克(Gregory de Walque)和托马斯·勒吉恩(Thomas Lejeune); Jan-Oliver Menz到德国; Morteza Ghomi,Jose Manuel Montero和Samuel Hurtado为西班牙; Oscar Arce,Matteo Ciccarelli,Carlos Montes-Galdón和Antoine Kornprobst的欧元区; Fares Bounajm,Jean Garry Junior Roc和Yang Zhang加拿大;意大利的Massimiliano Pisani和Alex Tagliabracci;丹尼斯·邦纳姆(Dennis Bonam),格伯特·赫宾克(Gerbert Hebbink)和荷兰的啤酒普鲁吉特(Beer Prujit)。除了这些研究人员外,我们还要感谢IMF,Sam Boocker和Dilek Sevinc的Daniel Leigh作为杰出的研究助理,以及Peterson Institute和Country Teams的研讨会参与者。在论文末尾列出的特定于国家 /地区的论文将很快出售。
Horowitz 等人使用图论方法提供了描述自主系统中信息传输的统一热力学方案。[9 ] Yamamoto 引入了图收缩法,证明了与信息流驱动相关的 Onsager 系数满足 Onsager 互易性。[10 ] 图论概念在学习纳米级能量、[11,12 ] 熵、涨落[13 ] 和信息的不可逆热力学方面取得了巨大成功。[14,15 ] Peusner 结合非平衡热力学、电路理论和图论,发展了网络热力学,以拓展其在生物系统中的适用性。 [ 16 – 22 ] 应用图论和网络热力学分析量子系统中的环通量、边通量和能量传输过程,可以指导热纳米器件的设计。一方面,许多研究关注不可逆热力学的自由能形式。Crooks 在微观可逆马尔可夫系统上进行了非平衡态自由能差异与功的测量。[ 23 , 24 ] Jarzynski 关系将两种状态之间的自由能差异与连接相同状态的一系列轨迹上的不可逆功联系起来,常用于计算经典系统和量子系统的平衡自由能。[ 25 – 28 ] Esposito 引入了非平衡系统自由能的概念来理解不可逆功
过去一段时间,对地缘政治风险 (GPR) 与军事支出 (ME) 之间关系的探索有限。这是因为缺乏广为人知的 GPR 代理。最近,Caldara 和 Iacoviello (2022) 的工作激发了学者们对 GPR 后果的研究。我们的论文旨在了解美国的 GPR 和 ME 之间的关系。它设计了一个理论框架,并使用基于年度数据 (1960-2021) 的自回归分布滞后方法计算了一个计量经济模型。此外,它使用了成对的 Toda-Yamamoto 因果关系检验。结果表明,GPR 和 ME 之间的关系是单向因果关系,在美国从 ME 延伸到 GPR。此外,这种关系在短期和长期内都具有统计显著性和正相关性。这一发现支持了我们的假设,即美国 GPR 是资源分配(即 ME)的结果,可以控制、引导和缓解。因此,ME是美国实现国际霸权战略目标的工具。从政策含义的角度来看,GPR已被证明对各个经济体都有广泛的负面影响。因此,走向与其他国家合作和协调而不是积累ME往往会支持国际经济。
量子力学是研究自然界中最小事物的学科。在 1927 年的索尔维会议上,29 位杰出的物理学家齐聚一堂,讨论当今量子理论的基础。与会者包括阿尔伯特·爱因斯坦、玛丽·居里、马克斯·普朗克、尼尔斯·玻尔和埃尔温·薛定谔。在他们的帮助下,对量子力学的理解使我们能够开发出许多现代技术,包括 MRI 扫描仪、核能、激光、晶体管和半导体 [1]。多年后的 1980 年,利用量子力学原理进行计算的设想应运而生。Benioff [2] 通过提供图灵机的薛定谔方程描述,证明了计算机可以根据量子力学定律运行。1988 年,Yamamoto 和 Igeta 提出了量子计算机的第一个物理实现,它包括经典门的量子等价物 [3]。1991 年,Artur Ekert 发明了基于纠缠的安全通信 [4]。 1998 年,琼斯和莫斯卡在牛津大学建造了一台可运行的 2 量子比特量子计算机 [5]。这是量子算法的首次实验演示。从那时起,量子设备取得了长足的进步。2007 年,瑞士使用量子技术来保护其投票系统 [6]。在日本,2010 年,使用量子密钥加密技术保护了电视会议 [7]。中国铺设了一条 2000 公里长的光纤
美国的个人资料保罗·乌尔里希(Paul Ullrich)博士是劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)气候韧性的负责人,也是加州大学戴维斯分校的区域和全球气候建模教授。他是美国能源部气候模型诊断与比对对比的主要研究人员(PCMDI)。他的工作着重于区域气候信息的开发,分析和评估。在这个角色中,他与美国各地的从业人员团体紧密合作,以了解其气候数据的需求,并了解气候变化的地区气候和极端天气事件如何影响。
Andrea Grozdanic、Arend Janssen、Shanlin Jin(实习生)、Leah C. Kennedy、Matthias Kempf、Poh Lynn Ng、Ingo Pitterle、Michał Podolski、Gabe Scelta、Krishnan Sharma、Shari Spiegel、Nancy Settecasi、Anya Thomas、Alexander Trepelkov 、泰特·韦恩、塞巴斯蒂安·维加拉和山本康久来自联合国/经社部;来自贸发会议的 Bruno Antunes、Stefan Csordas、Taisuke Ito、Mina Mashayekhi、Nicolas Maystre、Janvier D. Nkurunziza、Bonapas Onguglo 和 Julia Seiermann;来自 ECA 的 Yesuf Mohammednur Awel、Hopestone Chavula、Adam Elhiraika、Khaled Hussein、Allan Mukungu、Sidzanbnoma Nadia Denise Ouedraogo;来自欧洲经委会的何塞·帕拉辛 (José Palacín);来自拉加经委会的 Claudia De Camino、Michael Hanni、Esteban Pérez-Caldentey、Ramón Pineda、Daniel Titelman、Cecilia Vera、Jurgen Weller;来自亚太经社会的 Hamza Ali Malik、Jose Antonio Pedrosa Garcia、Sara Holttinen、Jeong-Dae Lee、Kiatkanid Pongpanich 和 Vatcharin Sirimaneetham;来自西亚经社会的 Seung-Jin Baek、Moctar Mohamed El Hacene、Mohamed Hedi Bchir 和 Ahram Han;来自 UNWTO 的 Michel Julian、John Kester 和 Javier Ruescas;来自 UN-OHRLLS 的 Miniva Chibuye;来自国际劳工组织的 Sheena Yoon、Stefan Kühn 和 Steven Tobin 得到了正式认可。
收到2022年4月26日;修订的手稿于2022年5月19日收到; 2022年5月23日接受; Nagasaki Nagasaki Nagasaki University Biomedical Sciences研究生院长10天在线发布J-Stage Advance出版物:10天心血管医学系(S.I.U.,Y.U.,K.M.);日本社区医疗保健组织东京新口医学中心,东京(S.Y.,M.T。); Amagasaki的Hyogo县Amagasaki通用医疗中心(Y.N.);萨波罗北海道大学医院(I.T.,J.N。); Hamamatsu Hamamatsu医疗中心(N. Yamamoto,T.K。);横田Yokosuka综合医院,Yokosuka(H.N.);仙台Tohoku大学医院(M.U.); Tsukuba Tsukuba医疗中心医院(S.A.);大阪大学医学院大阪大学(H.H.);福岛医学院,福岛医学院(H.S.);京都京都大学医院(Y. Okuno,Y.Y。);塞基(E.I.); MIE大学医院,TSU(Y。Ogihara);东京的Toho University Ohashi医学中心(N.I.); Shikoku儿童和成人医学中心,Zentsuji(又名); Tsukuba血管中心,Moriya(T.I.);库瓦纳库瓦纳市医疗中心(N. Yamada);福岛福岛Daiichi医院(T.O.);和横滨横滨京岛医院(M.M.),日本(脚注继续下一页。)
本研究评估了标准审查时间间隔与标准动态的关系。确定审查标准的最佳间隔有助于创造新的产品市场。本研究收集并分析了约 15,000 项有效或已撤销的法律标准的数据,得出了几个结论。首先,标准审查的有效时间间隔因标准所处的技术领域而异。其次,标准的类型(尤其是设计和符号标准)也会显著影响标准审查的有效时间间隔。第三,审查类型(例如修订)与标准的有效期限密切相关。这些发现有助于验证一个数学模型,该模型可以解释标准价值的动态。该模型可以分析标准的价值与应接受的审查类型之间的关系。该模型具有一个临界值,可以统一解释事实上的标准和法律标准在标准动态方面的情况。关键词 :法定标准、有效期限、标准类型、审查类型、动态 JEL :O30、O31、O34、L15。本研究由日本经济产业研究所 (RIETI) 开展。作者还感谢
凝聚微孔网络在气体和能量存储、传感和催化应用方面受到了广泛关注。1 9,9'-螺二芴基序对电子应用尤其重要,2,3 也已成为一种流行的结构单元,可作为扭曲位点来创建具有内在微孔性的材料。4-23 Yamamoto 将易得的 2,2',7,7'-四溴-9,9'-螺二芴与 Ni(COD) 2 偶联,可产生非常高表面积的微孔网络,并且在类似条件下与刚性二溴化芳香支柱进行共聚,可为材料提供可调的光学和气体吸附性能。24,25 其他方法也从 2,2',7,7'-四溴-9,9'-螺二芴试剂开始产生了均聚物或共聚物网络。目前对基于 9,9'-螺二芴更四面体导向的 3,3',6,6' 位聚合的缩合网络的探索相对较少,这可能是由于在 3,3',6,6' 位选择性卤化固有的挑战性所致。最近在 3,3',6,6' 位选择性卤化的一项策略是先在 2,2',7,7' 位进行初始甲氧基化,然后与 I 2 /PIFA 反应,得到 2,2',7,7'-四碘-3,3'6,6'-四甲氧基-9,9'-螺二芴前体。26 对该前体的进一步修饰产生了核碱基修饰的四足体。 27 随后,四炔通过 Sonogashira 和乙炔偶联反应聚合,生成螺二芴骨架,可作为 Pd 和 Pt 催化氢化的载体。28 3,3',6,6'-
Takeshi Arashiro A,B,C,D, *,Maki Miwa E,Hidenori Nakagawa F,Junpei Takamatsu G,Kunihiro oba H,Satoshi Fujimi,Hitoshi Kikikuchi kikikuchi J,Takamasa iwasawa iwasawa kkan kan kan kan kan kan kan kan kan kan kan kan kan kan O,Takanori Asakura P,Takahiro Asami Q,Keiko Mizuno R,Manabu Sugita R,Torahiko Jinta S, Yusuke Nishida t , Hideaki Kato u , Kazuaki Atagi v , Taiki Hiro Nakano w , Takeya Tsutsumi x , Kent Doi y , Shu Okugawa x , Akihiro Ueda z , Akira Nakamura aa , Toru Yoshida ab , Kaoru Shimada-Sammori ac , Keiki Shimizu ac , Yasuo Fujita ad , Yasumi Okochi ae , Kentaro Tochitani af , Asuka Nakanishi ag , Hiroshi Rinka ah , daisuke taniyama ai,asase yamaguchi i,toshio uchikura aj,maiko matsunaga ak,hiromi aono al,masanari hamaguchi o,kentaro motoda am,kentaro motoda am,sohei nakayama p. ,Shigeki Fujitani AB,Maki Tsukahara A,Saki Takeda A,Ashley Stucky A,Tadaki Suzuki B, Chris Smith c, d, Martin Hibberd c, Koya Ariyoshi d, Yuji Fujino ao, ap, Yuzo Arima a, 1, Shinhiro Takeda m, ao, aq, 1, Satoru Hashimoto ao, aq, 1, Motoi Suzuki a, 1