Lancair 由 Lance Neibauer 于 1984 年创立,现已成为世界上最成功的套件制造商之一。该公司制造了多种套件飞机,包括 Lancair ES 和 Super ES,以及世界上速度最快的活塞驱动飞机 Lancair IV 和 IV-P。Lancair 飞机保持着多项世界速度记录,并在大多数主要越野飞行比赛中夺得冠军。1999 年 7 月,Legacy 2000 作为 Lancair 320/360 的继任者推出。Legacy 提供了额外的乘客和行李空间,并且比之前的 Lancair 360 性能更高。使用 310 马力的 Continental IO-550-N,Legacy 在 8000 英尺的高度可实现超过 276 英里/小时的巡航速度。2001 年 9 月,Lancair International 试飞了涡轮发动机驱动的 Lancair IV-P。Lancair 现在推出了其最新版本的涡轮发动机:Lancair Sentry。这款 Walter 驱动的 Lancair IV 是一款军用风格的双座飞机,带有左侧油门控制装置和后铰链座舱。“这架飞机的性能与现有的 Propjet 模型非常相似,巡航速度几乎达到 400 英里/小时!“这款新的 Lancair 套件不仅能产生与 IV-P Propjet 型号类似的令人热血沸腾的速度,而且还能通过新设计的后铰链顶篷提供更高的偏航稳定性和出色的可视性。有关所有 Lancair 飞机的更多信息,请联系:LANCAIR INTERNATIONAL 2244 Airport Way, Redmond, OR 97756 电话:(541) 923-2244。www.lancair.com
太阳巡洋舰是一个小型(ESPA 级)卫星技术演示任务 (TDM),旨在使用面积大于 1600 平方米的太阳帆来完善太阳帆推进技术,展示其作为推进系统和稳定指向平台的性能,用于在日地拉格朗日点 1(sub-L1)向阳的人造晕轨道上进行科学观测。为了确保整个任务期间的姿态控制,必须管理用于姿态控制的反作用轮 (RW) 上累积的动量,以使帆船不会因 RW 动量饱和而失去控制。太阳辐射压力与质心 (CM)/压力中心 (CP) 偏移、变形的帆形和远离太阳的指向角以及其他因素相结合引起的环境扰动扭矩会在轮子上形成动量。太阳巡洋舰通过使用主动质量转换器 (AMT) 来减轻这种动量积累,通过调整 CM/CP 偏移来保持俯仰和偏航动量,并使用推进器来保持滚动动量。太阳巡洋舰团队进行了一项调查,以评估新型动量管理概念的可行性和权衡,例如反射率控制装置 (RCD)、不同的推进器配置以及控制叶片和其他铰接式控制面。此外,还评估了减少扰动扭矩累积的技术,例如减少吊杆尖端偏转和时钟角控制。类似的帆船动量管理策略可用于未来的任务,例如太空天气监测和地球磁尾科学任务。关键词:太阳巡洋舰、动量管理、GNC、ADCS
摘要 - 本文使用DJI Tello无人机作为自动控制工程领域的互动教学平台提出了动手教学方法。DJI Tello是一款小型商业四轮驱动器无人机,包括一个软件开发套件(SDK),它允许使用包括Python在内的各种编程语言来控制Tello。无人机还配备了大量传感器,这些传感器可在实时收集数据并分析控制输入(例如推力,俯仰,滚动和偏航)的变化如何影响其飞行路径和稳定性。这些功能使Tello成为一个很好的教学工具,用于以一种障碍和实用的方式展示控制概念。本文提供了两个教学应用的例子。第一个示例旨在在实践中说明如何使用传输函数使用系统标识来创建DJI Tello无人机的数学模型。第二个示例旨在说明如何设计比例综合(PI)控制器并在DJI Tello无人机上实现后进行验证。通过这些教学演示,有可能在为学生提供对建模和控制的基础概念方面的提供,同时增强认知学习。还观察到,即使学生没有航空的背景,但使用非典型系统(例如无人机)也引起了他们的好奇心,鼓励他们参与,从而使课堂上的示范更具动态性。关键字:教育平台,示威者,无人机,可视化,学生感知,控制理论。
最快的周期时间基于标准融合剪接,光纤锥度和裂解周期时间平均。在<0.01度分辨率的前对齐,光纤与光纤对准,端盖剪接,锥形玻璃剪接和光纤组合仪的<0.01度分辨率对齐,光纤与光纤排列,光纤纤维对齐,光纤上的自动对齐。使用5MP视觉系统的正交视图,具有远伦镜头,可提供4.2毫米宽x 3.5毫米高的视野,每秒最多20帧。实时过程通过完整分辨率的视频成像对熔融光纤玻璃进行全面视频成像,而不会过度暴露或过度暴露。可选的原位切肉刀可支持从20UM到500UM的光纤直径。能够将直径从125UM到2.5mm的融合剪接和缩小光纤逐渐变细。锥度功能需要锥度软件包。能够融合剪接光纤的直径不同至125um至2.5mm。压电驱动的弯曲阶段和软件包,提供130μm无振动的Z轴运动,并具有0.25μm理论分辨率。扫描软件能够在融合接头或光纤锥度之前或之后扫描光纤的直径。将自动捕获Fusion Splice图像在融合剪接之前,之中和之后以及每个接头的剪接数据和程序文件。“热成像”可实时进行光纤融合处理期间的实时观看。
Lancair 由 Lance Neibauer 于 1984 年创立,现已成为世界上最成功的套件制造商之一。该公司制造了多种套件飞机,包括 Lancair ES 和 Super ES,以及世界上速度最快的活塞式飞机 Lancair IV 和 IV-P。Lancair 飞机保持着多项世界速度记录,并在大多数主要越野飞行比赛中夺得冠军。1999 年 7 月,Legacy 2000 作为 Lancair 320/360 的继任者推出。Legacy 提供了额外的乘客和行李空间,并且比之前的 Lancair 360 性能更高。使用 310 马力的 Continental IO-550-N,Legacy 在 8000 英尺的高度可实现超过 276 英里/小时的巡航速度。2001 年 9 月,Lancair International 试飞了涡轮发动机驱动的 Lancair IV-P。Lancair 现在推出了其最新版本的涡轮发动机:Lancair Sentry。这款 Walter 驱动的 Lancair IV 是一款军用风格的双座飞机,带有左侧油门控制装置和后铰链座舱。“这架飞机的性能与现有的 Propjet 模型非常相似,巡航速度几乎达到 400 英里/小时!“这款新的 Lancair 套件不仅能产生与 IV-P Propjet 型号类似的令人热血沸腾的速度,而且还能通过新设计的后铰链顶篷提供更高的偏航稳定性和出色的可视性。有关所有 Lancair 飞机的更多信息,请联系:LANCAIR INTERNATIONAL 2244 Airport Way, Redmond, OR 97756 电话:(541) 923-2244。www.lancair.com
摘要 - 配备了四个独立的轮毂电动机的自主车辆,赋予了有益的设计灵活性,并使系统过度插入。扭矩分配渗透的策略决定了系统的性能,并标志着其能耗。在本文中,从车辆性能和能源消耗的角度开发了两个完整的新型控制体系结构。通过合并两个不同的控制水平来采用级联的控制策略。高级通过基于线性参数变化(LPV)系统框架中的最佳H∞控制的集中式方法来区分,以及基于问题解耦的分散方法,其中提出了使用超级扭转滑动滑动模式(STSM)控制的解决方案。两种方法均由决策层监督,以促进关键驾驶情况下的稳定目标。在低级别,使用原始扭矩分配策略实现了基于直接偏航控制(DYC)以及速度控制的稳定性控制。已经设计了一组全面的多四个多目标策略,以提议的扭矩分配配置为中心。这些策略涵盖了动态在线优化,使用高效的顺序二次编程(SQP)方法进行了专业解决,以及基于数据驱动的算法的唯一离线优化。在Simulink/Matlab和Scaner TM Studio车辆动力学模拟器之间的关节模拟中,对所提出的架构进行了测试和验证。模拟结果表明,在自动驾驶的轮驱动电动汽车的高水平和低水平上,稳定性,稳定性和能源效率都有很大的提高。
侧风着陆限制很大程度上取决于飞行员的技能。在尝试以超过 8 节的速度进行侧风着陆之前,请确保您拥有丰富的经验。一般技术应该是通过设置稳定的漂移角来保持跑道中心线。在进近的最后阶段,使用高于正常的进近速度来最小化漂移角。以略低于正常速度的速度飞越并争取短暂停留,以便飞机平稳着陆,先后轮,控制杆处于或略微向前于中立位置。后轮与地面的接触将使三轮车装置偏向跑道中心线,此时前轮可以轻轻地降到地面。一旦所有轮子都放下,迎风翼就可以稍微放下。为了确保在侧风着陆滑行期间获得最大的方向控制,建议的技术是在着陆后将控制杆移回并施加轻到中度制动。这消除了任何弹跳趋势并确保轮胎和跑道表面之间有良好的接触压力。这种应用空气动力载荷来增加地面压力从而提高着陆滑跑期间制动效率的技术也适用于短场着陆。请记住,在草地上侧风着陆比在硬地面上容易得多。在侧风着陆期间,大量的扭矩通过结构传递,导致过度
对可再生能源的需求不断增长,促使风能和水力发电系统的大量研究和发展。风力涡轮机利用了风的动能,而微型涡轮机将流动水的势能转化为机械能。这两种技术在多样化的能量组合和减少对化石燃料的依赖方面都起着至关重要的作用。对这些系统的有效控制对于优化其性能和确保可靠的能量输出至关重要。在风力涡轮机中,风速的变化提出了需要复杂的控制策略以最大化能量捕获并维持系统稳定性的挑战。1比例积分衍生(PID)控制器的实施已被证明有效地调节了转子速度,从而可以调整叶片螺距和偏航角以适应变化的风条件。同样,微型涡轮机受益于高级控制方法,可以有效地管理水流。在这里,PID控制器和磁滞带控制器的组合为维持涡轮速度和防止能量输出波动提供了强大的解决方案。PID控制器根据涡轮机的操作要求调整流量,而磁滞带控制器通过响应不同的水位来最大程度地减少振荡来帮助稳定系统。2,3本文研究了这些控制策略在增强风和微型涡轮机的效率和可靠性方面的应用。4,5通过检查这些技术之间的相互作用,该研究旨在确定风与水力系统整合的最佳实践,最终有助于混合可再生能源解决方案的发展。通过这次探索,本文旨在提高对控制方法的理解,这些方法可以显着影响可再生能源系统在日益持续的能源环境中的性能。
侧风着陆限制很大程度上取决于飞行员的技能。在尝试侧风着陆(速度超过 8 节)之前,请确保您拥有丰富的经验。一般技术应该是通过设置稳定的漂移角来保持跑道中心线飞行。在进近的最后阶段,使用高于正常的进近速度来最小化漂移角。以略低于正常速度的速度飞出,并争取短暂停留,以便飞机平稳着陆,先后轮,控制杆处于或略微向前于中立位置。后轮与地面的接触将使三轮车装置偏向跑道中心线,此时前轮可以轻轻地降到地面。一旦所有轮子都放下,迎风翼就可以稍微放下。为了确保在侧风着陆滑行期间获得最大的方向控制,建议的技术是在着陆后将控制杆移回并施加轻到中度制动。这消除了任何弹跳趋势并确保轮胎和跑道表面之间有良好的接触压力。这种在着陆滑行过程中施加空气动力载荷以增加地面压力并因此提高制动效率的技术也适用于短场着陆。请记住,在草地上侧风着陆比在硬地面上容易得多。在侧风着陆期间,大量的扭矩通过结构传递,导致悬挂点和附着结构过度磨损。如果可能,请始终尝试迎风着陆。如果侧风分量超过 15 节,则着陆只需要一小段迎风距离 - 例如穿过一条大跑道。
1.事实信息 ......................。。。。。。。。。。。。。。。。。。。。。。。。....1 1.1 飞行历史 .................。。。。。。。。。。。。。。。。。。。。。。。。..............1 1.2 人身伤害。.........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.3 飞机损坏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.4 其他损坏。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.5 人员信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.5.1 船长 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...................9 1.5.1.1 飞行员关于机长的采访。.....。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.5.2 副驾驶。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。........11 1.5.2.1 飞行员对副驾驶的采访 .............................12 1.6 飞机信息 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....14 1.6.1 垂直稳定器和方向舵 ..........................................15 1.6.2 舵控制系统 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1.6.2.1 关于 A300-600 方向舵控制系统的公开听证会证词 ........23 1.6.2.2 空客对 A300-600 方向舵控制系统设计的更改 ...........24 1.6.2.3 A300-600方向舵控制系统设计与其他飞机的比较 ..................。。。。。。。。。。。。。。。。。。。。。。。。........26 1.6.3 发电厂 .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 1.6.4 飞机合格审定。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 1.6.4.1 垂直安定面载荷认证。。。。。。。。。。。。。。。。。。。。。。。。。。。31 1.6.4.1.1 联邦航空法规。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 1.6.4.1.2 关于第 25.351 条的公开听证会证词。 。。。。。。。。。。。。。。..........33 1.6.4.1.3 补充条件。...........。。。。。。。。。。。。。。。。。。。。。。。。35 1.6.4.2 垂直稳定器的设计载荷 ..............................36 1.6.4.3 垂直稳定器认证测试 ..................................38 1.6.4.3.1 全尺寸垂直稳定器认证试验的有效性。.........39 1.6.4.3.2 附件配件认证测试的有效性 ................40 1.6.4.4 偏航轴认证要求。................。。。。。。。。。。。。。。41 1.6.4.5 设计操纵速度信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 1.6.5 维护记录。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 1.7 气象信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45 1.8 导航辅助设备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 1.9 通讯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 1.10 机场信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 1.10.1 空中交通管制信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 1.11 飞行记录仪。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48 1.11.1 驾驶舱录音机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48 1.11.2 飞行数据记录器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48