PEI Z,Deng K,Xu C,ZhangS。减数分裂阻滞和恢复卵母细胞发育和成熟的分子调节机制。再生生物内分泌。2023年10月2日; 21(1):90。Rabbani M,Zheng X,Manske GL,Vargo A,Shami AN,Li JZ,Hammoud SS。解码精子发生程序:转录组分析的新见解。Annu Rev Genet。2022 11月30日; 56:339-368。Trost N,Mbengue N,Kaessmann H.哺乳动物精子发生的分子进化。细胞开发。2023年9月; 175:203865。Coxir SA,Costa GMJ,Santos CFD,Alvarenga Rlls,Lacerda SMDSN。从体内到体外:探索人配子发生的关键分子和细胞方面。嗡嗡声单元。2023 Jul; 36(4):1283-1311。Vargas LN,Silveira MM,Franco MM。表观遗传重编程和体细胞核转移。方法mol biol。2023; 2647:37-58。McCarrey Jr。表观遗传启动作为精子干细胞命运预先确定的机制。 雄科。 2023 Jul; 11(5):918-926。 Krajnik K,Mietkiewska K,Skowronska A,Kordowitzki P,Skowronski MT。 女性的卵子发生:从分子调节途径和母体年龄到干细胞。 int J Mol Sci。 2023 Apr 6; 24(7):6837。 Hermann BP,Oatley JM。 简介:为什么以及如何研究精子发生和精子干细胞。 方法mol biol。 2023; 2656:1-6。 EUR UROL重点。 2023 JAN; 9(1):46-48。 细胞开发。 2023年9月; 175:203865。McCarrey Jr。表观遗传启动作为精子干细胞命运预先确定的机制。雄科。2023 Jul; 11(5):918-926。Krajnik K,Mietkiewska K,Skowronska A,Kordowitzki P,Skowronski MT。女性的卵子发生:从分子调节途径和母体年龄到干细胞。int J Mol Sci。2023 Apr 6; 24(7):6837。Hermann BP,Oatley JM。简介:为什么以及如何研究精子发生和精子干细胞。方法mol biol。2023; 2656:1-6。EUR UROL重点。 2023 JAN; 9(1):46-48。 细胞开发。 2023年9月; 175:203865。EUR UROL重点。2023 JAN; 9(1):46-48。细胞开发。2023年9月; 175:203865。Ramsoomair CK,Alver CG,Flannigan R,Ramasamy R,Agarwal A.精子干细胞和体外精子生成:我们离碎屑上的人睾丸有多远?Trost N,Mbengue N,Kaessmann H.哺乳动物精子发生的分子进化。Davis GM,Hipwell H,Boag PR。 秀丽隐杆线虫中卵子发生。 性爱。 2023; 17(2-3):73-83。 Irie N,Lee SM,Lorenzi V,Xu H等。 DMRT1调节人类种系承诺。 NAT细胞生物。 2023年10月; 25(10):1439-1452。 Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Davis GM,Hipwell H,Boag PR。卵子发生。性爱。2023; 17(2-3):73-83。Irie N,Lee SM,Lorenzi V,Xu H等。DMRT1调节人类种系承诺。NAT细胞生物。 2023年10月; 25(10):1439-1452。 Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。NAT细胞生物。2023年10月; 25(10):1439-1452。Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Jabari A,Gholami K,Khadivi F等。使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。Int J Biol Macromol。2023 Apr 30; 235:123801。Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。Adv Biol(Weinh)。2023 Jul; 7(7):E2200322。Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。Sertoli细胞是精子发生的干细胞因子的来源。开发。2023 3月15日; 150(6):DEV200706。Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Seita Y,Cheng K,McCarrey JR等。使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Elife。2023 JAN 31; 12:E82263。seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。方法mol biol。2023; 2656:145-159。Czukiewska SM,Fan X,Mulder AA,Van der Helm T等。 人类原始卵泡形成过程中的细胞 - 细胞相互作用。 生命科学联盟。 2023 8月29日; 6(11):E202301926。Czukiewska SM,Fan X,Mulder AA,Van der Helm T等。人类原始卵泡形成过程中的细胞 - 细胞相互作用。生命科学联盟。2023 8月29日; 6(11):E202301926。
指南针模型是物质理论的一部分,其中内部自旋(或其他相关场)分量之间的耦合本质上依赖于空间(通常是方向)。一个简单的说明性示例是方晶格上的 90 ° 指南针模型,其中只有形式为 τ xi τ xj 的耦合(其中 { τ ai } a 表示位置 i 的泡利算符)与沿晶格 x 轴分隔的最近邻位置 i 和 j 相关,而 τ yi τ yj 耦合出现在 y 轴上由晶格常数分隔的位置。一个非常著名的指南针模型是蜂窝状 Kitaev 哈密顿量。这种指南针型相互作用可以出现在不同的物理系统中。这包括具有轨道自由度的莫特绝缘体,其中相互作用敏感地依赖于所涉及轨道的空间方向,受挫量子磁体的低能有效理论、空位中心和冷原子气体。 Kitaev 模型,尤其是蜂窝晶格上的指南针变体,实现了拓扑量子计算的基本概念。指南针模型所依据的内部(自旋、轨道或其他)和外部(即空间)自由度之间的基本相互依赖性通常会导致非常丰富的行为,包括非受挫晶格上(半)经典有序状态的受挫以及增强的量子效应,在某些情况下,这会导致零温度量子自旋液体的出现。由于这些受挫,可能会出现新型对称性及其相关的退化。特别是,这些系统具有中间(最近也称为(尤其是在高能和量子信息社区中)并进一步归类为“高级形式”或“子系统”)对称性,这些对称性介于全局对称性和局部规范对称性的极端之间,并导致有效的维度降低。我们以统一的方式考虑指南针模型,密切关注这些对称性的后果,以及通过无序效应实现有序化以稳定秩序的热和量子涨落。我们回顾了非平凡统计数据和指南针系统中拓扑量子序的出现,由于其中间对称性,标准序不会出现。
(1) Baah, S.;Laws, M.;Rahman, KM 抗体–药物偶联物——教程综述。Molecules 2021 ,26 (10), 2943。https://doi.org/10.3390/molecules26102943。(2) Chau, CH;Steeg, PS;Figg, WD 用于治疗癌症的抗体–药物偶联物。The Lancet 2019 ,394 (10200), 793–804。https://doi.org/10.1016/S0140-6736(19)31774-X。(3) Beck, A.;Goetsch, L.;Dumontet, C.;Corvaïa, N. 下一代抗体–药物偶联物的策略与挑战。Nat. Rev. Drug Discov. 2017 ,16 (5),315–337。https://doi.org/10.1038/nrd.2016.268。(4)Yu, L.;Hua, Z.;Luo, X.;Zhao, T.;Liu, Y. 血浆白蛋白与化疗药物疗效的系统相互作用。Biochim. Biophys. Acta Rev. Cancer 2022 ,1877 (1),188655。https://doi.org/10.1016/j.bbcan.2021.188655。(5)Spada, A.;Emami, J.;Tuszynski, JA;Lavasanifar, A. 白蛋白作为纳米药物递送载体的独特性。Mol. Pharm. 2021, 18 (5), 1862–1894。 https://doi.org/10.1021/acs.molpharmaceut.1c00046。 (6)拉希米扎德,P.;杨,S。 Lim,SI 白蛋白:药物输送的新兴机会。生物技术。生物过程工程。 2020,25(6),985–995。 https://doi.org/10.1007/s12257-019-0512-9。 (7) 赵平;王,Y。吴,A。拉奥,Y。 Huang, Y.白蛋白结合蛋白在癌症进展和仿生靶向药物递送中的作用。欧洲化学生物化学公司。 J.化学。生物。 2018 ,19 (17),1796–1805。https://doi.org/10.1002/cbic.201800201。(8)Tao, C.;Chuah, YJ;Xu, C.;Wang, D.-A。白蛋白结合物和组装体作为生物医学应用的多功能生物功能添加剂和载体。J. Mater. Chem. B 2019 ,7 (3),357–367。https://doi.org/10.1039/C8TB02477D。(9)Liu, Z.;Chen, X。简单的生物共轭化学为临床带来重大进展:白蛋白作为诊断和精准治疗的多功能平台。Chem. Soc. Rev. 2016 ,45 (5),1432–1456。 https://doi.org/10.1039/C5CS00158G。(10)Kratz,F. 使用白蛋白作为药物载体的临床更新 - 评论。J.
•MA,XDEM和YJ开发了概念并设计了实验。•MA,NP,MD,DH,NF和JP进行了实验。•GN准备了最终手稿。摘要:CAR T细胞产生的传统方法涉及长时间的离体培养时间,这可能导致关键的幼稚T细胞亚群减少。此外,传统的汽车T细胞疗法制造过程可以延长患者的时间并有助于疾病的进展。在这项研究中,我们描述了一种创新和自动化的24小时汽车T制造工艺,该工艺产生了更高比例的幼稚/干细胞,例如T细胞增加了细胞毒性活性和细胞因子释放。数据支持在诊所中实施这种简化的制造过程的可行性。这种方法还具有增强汽车治疗功效并提高患者获得治疗的潜力。关键字:汽车T细胞,CAR T细胞制造,CAR T细胞工作流程,自动化简介:嵌合抗原受体工程T细胞(CAR T)代表了癌症治疗领域的显着突破。1,2,3虽然这是治疗这些原本致命癌症的主要进步,但大约30-40%的B细胞恶性肿瘤患者在使用CAR T细胞治疗后长期缓解了长期缓解,突显了需要开发更有效的治疗方法。4,5,6此外,最近的研究报告说,参加CD19靶向的CAR T细胞疗法的B细胞急性淋巴细胞白血病(B-ALL)患者由于在(内部疾病和CAR T Infusifus Orfusion或制造失败之间的疾病进展)而无法接受这些治疗。7,8,9制造CAR T细胞的传统方法涉及长期的离体培养时间,跨越7至14天,这可能导致重要的T细胞子集的减少,例如幼稚和T记忆干细胞。传统处理CAR T细胞的最终产物通常具有高度分化的T细胞的富集群体。研究表明,可以自我更新和重构不同的T细胞子集的T记忆干细胞(TSCM)对于长期抗肿瘤功效至关重要。5、6、7、8、10、11此外,一些最近的临床前研究表明,当没有事先的离体激活和扩张,或者是从Naive/TSCM前体细胞池中选择的情况下,CAR T细胞针对白血病的有效性增强。很重要的是,经历阳性临床结果的慢性淋巴细胞性白血病(CLL)患者在其白细胞术材料中表现出较高的天真和TSCM细胞。12,13,14,15
4 灭活疫苗预防 SARS CoV-2 感染(covid-19)的安全性和免疫原性研究。试验号 NCT04352608。https://clinicaltrials.gov/ct2/show/NCT04352608。5 Walls AC, Park YJ, Tortorici MA 等人。SARS-CoV-2 刺突糖蛋白的结构、功能和抗原性。Cell 2020;181:281-292.e6。10.1016/j.cell.2020.02.058 32155444 6 Zhou P, Yang XL, Wang XG 等人。与可能源自蝙蝠的新型冠状病毒相关的肺炎疫情。Nature 2020;579:270-3。 10.1038/s41586-020-2012-7 32015507 7 朱娜、张丹、王伟等。中国新型冠状病毒调查研究组。2019 年中国肺炎患者中发现的一种新型冠状病毒。N Engl J Med 2020;382:727-33。10.1056/NEJMoa2001017 31978945 8 牛津大学。一项关于候选 COVID-19 疫苗 (COV001) 的研究。试验编号 NCT04324606。https://www.clinicaltrials.gov/ct2/show/NCT04324606 9 Mckay PF、Hu K、Blakney AK 等。自扩增 RNA SARS-CoV-2 脂质纳米颗粒疫苗诱导的临床前抗体滴度和病毒中和与康复的 COVID-19 患者相同。bioRxiv 2020.04.22.055608 [预印本] 2020. 10.1101/2020.04.22.055608 10 Moorlag SJCFM、Arts RJW、van Crevel R、Netea MG。BCG 疫苗对病毒感染的非特异性影响。Clin Microbiol Infect 2019;25:1473-8。10.1016/j.cmi.2019.04.020 31055165 11 Guallar-Garrido S、Julián E. 卡介苗 (BCG) 治疗膀胱癌:最新进展。 Immunotargets Ther 2020;9:1-11。10.2147/ITT.S202006 32104666 12 Miller A、Reandelar MJ、Fasciglione K 等人。普及 BCG 疫苗接种政策与降低 COVID-19 发病率和死亡率之间的相关性:一项流行病学研究。MedRxiv 2020.03.24.20042937 [预印本] 10.1101/2020.03.24.20042937。13 Dayal D、Gupta S。将 BCG 疫苗接种与 COVID-19 联系起来:附加数据。MedRxiv 2020.04.07.20053272。 [预印本] 2020,10.1101/2020.04.07.20053272 14 美国国家医学图书馆。https://www.clinicaltrials.gov/ct2/results?cond=COVID-19+&term=vaccine 15 Chumakov K, Gallo R. 旧疫苗能否成为新型冠状病毒的天赐之物?2020.https://eu.usatoday.com/story/opinion/2020/04/21/oral-polio-vaccine-has-potential-treat-coronavirus-column/5162859002/ 16 Young A, Neumann B, Mendez RF 等人。SARS-CoV-2 与麻疹、腮腺炎和风疹病毒中的同源蛋白结构域:MMR 疫苗可能提供针对 COVID-19 保护的初步证据。 MedRxiv 2020.04.10.20053207。[预印本] 2020.10.1101/2020.04.10.20053207
在土壤中。Marchesi和Ravel(1)在其对微生物基因和蛋白质表达的基因和模式的定义中,在给定的环境中以及其中占据了生物和非生物条件。根据这些作者,微生物生物群包括生活在特定的小众中,例如肠。这两种债务都表明,宏观生态学的一般概念可以轻松用于微生物 - 微生物以及微生物 - 宿主。另一方面,“微生物群”一词首先是由Lederberg和McCraya(2)定义的,以强调居住在健康和疾病中人体的微生物的重要性。摩尔生物是通过摩尔 - 斑点方法鉴定的,主要由16S rRNA基因,18S rRNA基因或其他营销基因和基因组区域的分析,放大和微生物组的测试。微生物组位于身体的严格定义位置,例如在消化道,皮肤,生殖系统,呼吸道,同时以定性和定量术语区分微生物组的微生物组。它们非常适合特定年龄范围内特定物种的个体中的个体(例如新生儿,青少年,成人)。通常,微生物群微生物组执行保护功能,这要归功于一个地方的竞争以及有条件疾病的微生物(3,4)。发现,人类和动物的微生物组也会影响身体的发展和各种功能,将他的研究(5)加强为“新发现的器官”,这对健康有重大影响,通常是决定性因素
1. Allareddy V、Rengasamy Venugopalan S、Nalliah RP、Caplin JL、Lee MK、Allareddy V。大数据分析时代的正畸学。Orthod Craniofac Res。2019;22 (Suppl 1):8-13。2. Khanagar SB、Al-ehaideb A、Maganur PC 等人。人工智能在牙科领域的发展、应用和表现——系统评价。J Dent Sci。2021;16(1):508-522。3. Jordan MI、Mitchell TM。机器学习:趋势、观点和前景。科学。2015;349:245-260。4. Jung MH。影响治疗效果的因素:一项前瞻性队列研究。Angle Orthod。 2021;91(1):1-8。5. Nayyar N、Ojcius DM、Dugoni AA。医学和技术在塑造口腔健康未来中的作用。加州牙科学会杂志。2020;48(3):127-130。6. Schwendicke F、Golla T、Dreher M、Krois J。卷积神经网络用于牙科图像诊断:范围界定综述。牙科杂志。2019;91:103226。7. Jung SK、Kim Ansan TW。使用神经网络机器学习诊断拔牙的新方法。Am Orthod Dentofac Orthop。2016;149(1):127-133。8. Tricco AC、Lillie E、Zarin W 等人PRISMA 范围审查扩展(PRISMA-ScR):检查表和说明。Ann Intern Med。2018;169:467-473。9. Choi HI、Jung SK、Baek SH 等。用于正颌手术诊断的神经网络机器学习人工智能模型。J Craniofac Surg。2019;30(7):1986-1989。10. Kim H、Shim E、Park J、Kim YJ、Lee U、Kim Y。基于网络的全自动深度学习头颅测量分析。Comput Methods Programs Biomed。2020;194:105513。 11. Dobratulin K、Gaidel A、Aupova I、Ivleva A、Kapishnikov A、Zelter P。深度学习算法在头部轮廓放射图像上检测解剖参考点的效率。arXiv。2020;01135(18):0-5。12. Lee JH、Yu HJ、Kim MJ、Kim JW、Choi J。使用贝叶斯卷积神经网络自动进行具有置信区域的头颅测量标志检测。BMC Oral Health。2020;20(1):1-10。13. Kim MJ、Liu Y、Oh SH、Ahn HW、Kim SH、Nelson G。使用锥形束 CT 合成的后前位头颅测量图像评估基于多阶段卷积神经网络的全自动标志识别系统。Korean J Orthod。 2021;51(2):77-85。
1. Dome JS、Cotton CA、Perlman EJ 等人。间变性组织学 Wilms 肿瘤的治疗:第五次全国 Wilms 肿瘤研究的结果。J Clin Oncol。2006;24(15):2352-2358。https://doi.org/10.1200/JCO.2005.04.7852 2. Hing S、Lu YJ、Summersgill B 等人。1q 增益与良好组织学 Wilms 肿瘤的不良结果相关。Am J Pathol。2001;158(2):393-398。https://doi.org/10.1016/S0002- 9440(10)63982-X 3. Gratias EJ、Dome JS、Jennings LJ 等人。 1q 染色体增益与组织学良好的 Wilms 肿瘤较差生存率的关系:儿童肿瘤组的报告。J Clin Oncol。2016;34(26):3189-3194。https://doi.org/10.1200/JCO.2015。66.1140 4. Weirich A、Leuschner I、Harms D 等人。根据试验和研究 SIOP-9/GPOH 治疗的局限性非间变性肾母细胞瘤组织学亚型的临床影响。Ann Oncol。2001;12(3):311-319。https://doi.org/10.1023/a:1011167924230 5. Groenendijk A、Spreafico F、de Krijger RR 等人。威尔姆斯肿瘤复发的预后因素:文献综述。巴塞尔癌症。2021;13(13):3142。https://doi.org/10.3390/cancers13133142 6. Vakkila J、Jaffe R、Michelow M、Lotze MT。儿童癌症主要由巨噬细胞浸润,且树突状细胞稀少:与成人肿瘤的主要疾病分类差异。临床癌症研究。2006;12(7):2049-2054。https://doi.org/10.1158/1078-0432.CCR-05-1824 7. Gröbner SN、Worst BC、Weischenfeldt J 等人。儿童癌症基因组改变的格局。 Nature 。2018;555(7696):321-327。https://doi.org/10.1038/nature25480 8. Webster RM。免疫检查点抑制剂:我们现在处于什么位置?Nat Rev Drug Discov。2014;13(12):883-884。https://doi.org/10.1038/ nrd4476 9. Postow MA、Callahan MK、Wolchok JD。癌症治疗中的免疫检查点阻断。J Clin Oncol。2015;33(17):1974-1982。https://doi. org/10.1200/JCO.2014.59.4358 10. van den Heuvel-Eibrink MM、Hol JA、Pritchard-Jones K 等人。 UMBRELLA SIOP-RTSG 2016 方案中 Wilms 肿瘤治疗的理由。Nat Rev Urol。2017;14(12):743-752。https://doi. org/10.1038/nrurol.2017.163 11. Maturu P、Overwijk WW、Hicks J、Ekmekcioglu S、Grimm EA、Huff V。Wilms 肿瘤炎症微环境的特征和潜在治疗靶点的识别。Transl Oncol。2014;7(4):484-492。https://doi.org/10.1016/j.tranon。2014.05.008
Amis, JM 和 Silk, ML (2008)。定性组织研究中的质量哲学与政治。组织研究方法,11 (3),456 – 480。Bender, EM 和 Friedman, B. (2018)。自然语言处理的数据语句:减轻系统偏见并实现更好的科学。计算语言学协会会刊,6,587 – 604。Bockting, CL、van Dis, EA、van Rooij, R.、Zuidema, W. 和 Bollen, J. (2023)。生成式人工智能的生活指南:为什么科学家必须监督其使用。自然,622 (7984),693 – 696。Code, L. (2001)。理性的想象,负责任的认知:你能从这里看多远?在 N. Tuana 和 S. Morgen (Eds.) 编著的《Engendering rationalities》(第 261 – 282 页)中。纽约州立大学。 Crawford, K. (2021)。是时候规范解读人类情感的人工智能了。《自然》,592 (8),167。 Floridi, L., & Taddeo, M. (2016)。什么是数据伦理?《哲学汇刊 A》,374,2016036020160360。https://doi. org/10.1098/rsta.2016.0360 Gibbs, GR (2018)。分析定性数据。Sage。https://doi.org/10.4135/9781526441867 Gregor, S. (2024)。负责任的人工智能和期刊出版。信息系统协会杂志,25 (1),48 – 60。https://doi.org/10.17705/1jais.00863 Grimes, M.、von Krogh, G.、Feuerriegel, S.、Rink, F. 和 Gruber, M. (2023)。从稀缺到丰富:生成人工智能时代的学者和学术。管理学院杂志,66 (6),1617 – 1624。Hammersley, M. 和 Traianou, A. (2012)。定性研究中的伦理:争议和背景。Sage。Iphofen, R. 和 Tolich, M. (2018)。定性研究伦理的基础问题。在 Iphofen 和 Tolich(编辑)《Sage 定性研究伦理手册》中。Sage。 https://doi.org/10.4135/9781526435446 Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, YJ, Madotto, A., & Fung, P. (2023)。自然语言生成中的幻觉调查。ACM 计算调查,55 (12),1 – 38。Mingers, J. (2008)。管理知识与知识管理:现实主义和真理形式。知识管理研究与实践,6,62 – 76。Oakley, A. (2013)。采访女性:一个矛盾的说法。在 H. Roberts(编辑),进行女权主义研究(第 30 – 61 页)。劳特利奇。Pearlman, R. (2017)。根据美国知识产权法,承认人工智能 (AI) 为作者和投资者。Rich-mond 法律与技术杂志,24,1-38。Susarla, A.、Gopal, R.、Thatcher, JB 和 Sarker, S. (2023)。生成式人工智能的 Janus 效应:为信息系统中负责任地开展学术活动指明道路。信息系统研究,34 (2),399-408。英国社会科学院。(2015 年)。为社会科学研究制定通用伦理原则。https://acss.org。uk/wp-content/uploads//Generic-Ethics-Principles-in-Social-Science-Research-2013.pdf 联合国教科文组织。(2021 年)。关于人工智能伦理的建议。https://www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence
参考文献 • Crow YJ。Aicardi-Goutieres 综合征。2005 年 6 月 29 日 [2016 年 11 月 22 日更新]。引自:Adam MP、Feldman J、Mirzaa GM、Pagon RA、Wallace SE 和 Amemiya A,编辑。GeneReviews(R) [Internet]。西雅图 (WA):华盛顿大学,西雅图;1993 - 2025 年。可从 http://www.ncbi.nlm.nih.gov/books/NBK1475/ PubMed 引文获取 (https://pubmed.ncbi.nlm.nih.gov/20301648) • Fisher AJ、Beal PA。根据 ADAR-RNA 结构预测 Aicardi-Goutieres 综合征突变的影响。RNA Biol。2017 年 2 月;14(2):164-170。 doi:10.1080/15476286。2016.1267097。2016 年 12 月 12 日电子版。PubMed 上的引用(https://pubmed.ncbi.nlm.nih .gov/27937139)或 PubMed Central 上的免费文章(https://www.ncbi.nlm.nih.gov/pm c/articles/PMC5324757/)• Hayashi M、Suzuki T。遗传性对称性色素异常。J Dermatol。2013 年 5 月;40(5):336-43。doi: 10.1111/j.1346-8138.2012.01661.x。 Epub 2012 年 9 月 14 日。PubMed 上的引用 (https://pubmed.ncbi.nlm.nih.gov/22974014) • Heraud-Farlow JE、Walkley CR。ADAR1 的 RNA 编辑在预防自身 RNA 的先天免疫感应中的作用。J Mol Med (Berl)。2016 年 10 月;94(10):1095-1102。doi: 10.1007/s00109-016-1416-1。Epub 2016 年 4 月 5 日。PubMed 上的引用 (https://pub med.ncbi.nlm.nih.gov/27044320) • Liddicoat BJ、Chalk AM、Walkley CR。ADAR1、肌苷和免疫感应系统:区分自身和非自身。Wiley Interdiscip RNA 综述。 2016 年 3 月至 4 月;7(2):157-72。doi:10.1002/wrna.1322。2015 年 12 月 21 日电子版。PubMed 上的引用(https://pubmed.ncbi.nlm.nih.gov/26692549)• Pestal K、Funk CC、Snyder JM、Price ND、Treuting PM、Stetson DB。RNA 编辑酶 ADAR1 的同工型独立控制核酸传感器 MDA5 驱动的自身免疫和多器官发育。免疫。2015 年 11 月 17 日;43(5):933-44。doi:10.1016/j.immuni.2015.11.001。 PubMed 上的引用 (https://pubmed.ncbi .nlm.nih.gov/26588779) 或 PubMed Central 上的免费文章 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654992/) • Rice GI、Kasher PR、Forte GM、Mannion NM、Greenwood SM、Szynkiewicz M、Dickerson JE、 Bhaskar SS、Zampini M、Briggs TA、Jenkinson EM、Bacino CA、BattiniR、Bertini E、Brogan PA、Brueton LA、Carpanelli M、De Laet C、de Lonlay P、delToro M、Desguerre I、Fazzi E、Garcia-Cazorla A、Heiberg A、Kawaguchi M、Kumar R、Lin JP、Lourenco CM,男AM,马克斯·W Jr、Mignot C、Olivieri I、Orcesi S、Prabhakar P、Rasmussen M、Robinson RA、Rozenberg F、Schmidt JL、Steindl K、TanTY、van der Merwe WG、Vanderver A、Vassallo G、Wakeling EL、Wassmer E、