1 德克萨斯大学 MD 安德森癌症中心妇科肿瘤学和生殖医学系,美国德克萨斯州休斯顿 77030;rjoseph7@mdanderson.org(RJ);santy2407@gmail.com(SKD);sumamaheswaran@mdanderson.org(SU);lsmangala@mdanderson.org(LSM);ebayraktar@mdanderson.org(EB);wyutuandr@gmail.com(YW);yliu32@mdanderson.org(YL);mkim3@mdanderson.org(MSK);scorvigno@mdanderson.org(SC);fosterki13@gmail.com(KF);phanjra@mdanderson.org(PH);tvu9@mdanderson.org(TCV);mamur@utexas.edu(MAC); swestin@mdanderson.org (SNW) 2 德克萨斯大学 MD 安德森癌症中心 UTHealth 休斯顿生物医学科学研究生院,美国德克萨斯州休斯顿 77030 3 德克萨斯大学 MD 安德森癌症中心实验治疗学系,美国德克萨斯州休斯顿 77030;crodriguez2@mdanderson.org (CR-A.);pamero@mdanderson.org (PA);glopez@mdanderson.org (GL-B.) 4 高通量研究和筛选中心,转化癌症研究中心,德克萨斯 A&M 健康科学中心,生物科学与技术研究所,美国德克萨斯州休斯顿 77030;nnguyen@tamu.edu (NN);repowell@tamu.edu (RTP);msobieski@tamu.edu (MS); cstephan@ibt.tamhsc.edu (CS) * 通讯地址:asood@mdanderson.org;电话:+1-713-745-5266 † 这些作者对这项工作做出了同等贡献。‡ 当前地址:印度国家动物生物技术研究所,海得拉巴 500029。
我非常感谢 Jaan Praks 在整个项目中的指导以及许多富有启发性的讨论。我还要向 Andris Slavinskis 表示最诚挚的谢意,感谢他帮助我制定了最初的项目提案,以及 Pasi Yl¨a-Oijala 为本报告提供源源不断的评论和反馈。我还要感谢阿尔托大学空间技术小组的每个人,他们在需要时提供帮助和建议,以及许多有趣的对话。我要特别感谢 David Fischer 分享他的专业知识并帮助指导这个项目。他一直很乐意提供帮助,他的反馈和建议对将这个项目的工作提升到更高的水平非常有价值,我学到了很多东西。此外,我还要感谢所有帮助过我的朋友,让过去两年多的时间,无论是在基律纳还是赫尔辛基,都是一次精彩而难忘的经历。这里要提到的人太多了,无法一一列举,但我要感谢 Antonio、Johan、Flavia、Anne、Cornelis、Ric、Jonathan 和 Bj¨orn 在撰写本报告期间的陪伴和帮助。最后,但并非最不重要的是,我要感谢我的家人一直支持和鼓励我。我可以肯定地说,如果没有他们,我不会取得今天的成就。
NATURE IN SINGAPORE 17 : e2024027 Date of Publication: 27 March 2024 DOI: 10.26107/NIS-2024-0027 © National University of Singapore Biodiversity Record: The shore earwig, Labidura riparia , at Pasir Ris Park Ivan Neo * & Su Yan Le Email: ivan.neo@u.nus.edu ( * corresponding author), e0726718@u.nus.edu推荐引用。neo i&su yl(2024)生物多样性记录:帕西尔·里斯公园(Pasir Ris Park)的拉伯拉(Labidura Riparia)海岸wig。新加坡的自然,17:e2024027。doi:10.26107/nis-2024-0027受试者:shore earwig,labidura riparia(昆虫:皮肤菌:labiduridae)。识别的主题:Boris Eliseev。地点,日期和时间:新加坡岛,帕西尔Ris Park,桑吉·淡鞋; 2023年12月31日;大约2223小时。栖息地:桑迪海滩和红树林旁边的混凝土防波堤。观察者:伊万·尼奥和苏Yan le。观察:至少15个例子,每个例子约2厘米,由成人组成(图。1-3)和未成熟(图4)注意到,在防波堤和邻近的牛草片上爬行。
对产生相应的(z)-n' - (((1H-indol-3- yl)甲基甲基甲基甲基甲基)的相应的(z)-n' - (CH)的反应。 CH和CHN抑制剂的抑制效率分别分别减轻体重减轻,而CH和CHN抑制剂的抑制效率分别为约86.9%,CH和CHN抑制剂的抑制效率分别为降低的抑制剂,而CHN抑制剂的极化耐极能力高于CHN抑制剂的较高限制,而CHN抑制剂的浓度降低了,则在较大的情况下降低了COROSIT的差异。对于CH和CHN抑制剂,K ADS分别为11.4824 m -1和6.8667 m -1。吸附的自由能(∆ g o ads。)为-12.1685 kJ mol -1,CHN抑制剂为-14.7326 kJ mol -1。这表明CH和CHN抑制剂都被物理吸附到低碳钢表面上,而CHN则优先吸附。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。
摘要:聚合物膜的渗透性和反应性与用于货物输送的聚合物体的设计绝对相关。因此,我们在此将阿霉素负载(dox负载)的无反应性和刺激反应性聚合物的结构特征,渗透性和反应性与其体外和体内抗肿瘤性能相关联。聚合物囊泡(PHPMA),与聚[N-(4-异丙基苯甲酰胺)乙基酰胺乙基甲基甲基甲基酯(甲基甲基甲基酯)(Pppha)(Pppha)(pppha)(pppha)(pppha)(pppa),非pphha,nonnon block,nonnon block) poly [4-(4,4,5,5-甲基-1,3,2-二甲苯甲基-2- Yl)甲基丙烯酸酯] [Pbape,反应性氧(ROS) - 响应型块]或Poly [2-(二异丙基氨基)乙酰乙烯乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙烯酸乙酯](Pdpa)(pdpa),pdpa,ph-ph-block)。与抗肿瘤活性相比,基于PDPA的聚合体表现出出色的生物学性能,其抗肿瘤活性显着增强。,我们将这种行为归因于酸性肿瘤环境中快速触发的DOX释放,这是由pH响应性多聚合体拆卸pH <6.8所引起的。可能,所选肿瘤模型的ROS浓度不足会削弱Ros响应囊泡降解的速率,而PPPHA块的无反应性质显着影响这种潜在的纳米甲酶的性能。
摘要:一种新型的杂酵母(III)乙酰乙酸(ACAC)复合物,(L-5-CHO)2 IR(ACAC)(3B)(3B),是由2-(9'-己基碳唑-3'-3'-y-yly)合成的 - 5-5-5-甲基甲基)-5-甲基甲基吡啶(L-5-Cho)。复合物3b被确定为热化学稳定。研究了该化合物的光致发光特性,3B的二氯甲烷溶液在662 nm处产生无结构的发射,表明与父络合物相比,甲基基团红移151 nm。复合物3b也显示出具有中等的光致发光量子产率(67%)和短发射寿命(= 280 ns)。有机发光二极管(OLEDS)用由聚(N-乙烯基碳水化合物)(PVK),2-(4-tert-叔丁基苯基)-5-(4-二苯基)-1-1,1,3,4-4-oxadia-oxadia-oxadiazole(PBD)组成的溶液加工的发射层(EML)制造。含有复合物3b的OLED在624 nm处显示出红橙发光(EL)。研究了宿主材料的影响,并在发射层中使用PVK和PBD达到了最佳性能,结果OLED的当前效率为0.84 CD/A,功率效率为0.20 Lm/w,外部量子效率(EQE)的功率为0.66%,为2548 CD/M M 22548 CD/M M 2546%。
开发新材料是应对电池技术挑战的关键。离子液体基聚合物电解质具有不可燃性和高热稳定性,可以降低爆炸风险。LiMPO 4 正极(M=Fe、Mn、Co……)的使用有助于提高热稳定性,这是因为金属和氧之间存在共价键。有机电极具有灵活性,可以促进可充电锂电池的回收利用。在本研究中,这些材料已被用于超安全、灵活、绿色和高倍率锂电池。使用拉曼、XPS、DSC 和介电光谱研究了它们的物理性质,并结合一些 LiMPO 4 正极探索了离子液体基聚合物电解质的电化学性能。研究了离子配位、离子电导率、氧化稳定性、电极材料的溶解和电化学性质。为了克服有机电极材料含碳量高、活性物质溶解等缺点,本文还研究了新型纳米纤维有机自由基聚合物[(聚(2,2,6,6-四甲基哌啶氧-4-基甲基丙烯酸酯)(PTMA)]电极、含有甲氧基官能团(CH3O)的新型有机正极材料2,3,6,7,10,11-六甲氧基三苯并菲(HMTP)]和Py14TFSI基聚合物电解质。
传记Serena Low博士目前是KTPH临床研究部(CRU)的顾问。她于2002年获得新加坡国立大学(NUS)的医学学位。她继续学习公共卫生,并于2007年从伦敦大学获得了伦敦大学公共卫生的理学硕士学位(MSC),并于2008年获得了伦敦卫生和热带医学学院的公共卫生文凭。她于2010年完成了2010年的公共卫生高级专业培训,自2019年以来一直在Lee Kong Chian医学院攻读博士学位(医学)。Low博士在几个高影响同行评审的期刊上发表了第一作者。她在2017年和2019年分别于2017年和2019年举行的东盟内分泌社会联合会第19和第20届双年期科学会议上获得了AFES研究者奖和最佳口头颁奖奖。她还在2019年(金牌)获得了2018年的基础科学 /转化研究海报奖类别,并在2019年新加坡健康与生物医学大会上获得了2019年(黄金)的奖项。精选出版物▪低S,张X,王
摘要。本研究的目的是评估激光定位的功效和安全性以及软通道微创手术(MIS)以治疗脑出血,并开发出易于效率,安全和精确的区域的立体定向替代方案。为了实现这一目标,将60例脑出血患者随机分配给对照组(n = 30)或研究组(n = 30)。研究组中的患者用激光定位和软通道MIS进行治疗以去除血肿,而对照组用YL -1针穿刺治疗,以排干颅内出血。所有患者都接受了成功的手术治疗。研究组的血肿清除率为88.72±2.82%,对照组为84.50±4.26%。两组都达到了残留的血肿量<10 mL或血肿清除率> 70%,并且与对照组相比,血肿清除率的差异具有统计学意义(P <0.05),研究组的血肿清除率有所提高。研究组的7天术后格拉斯哥昏迷量表得分为13.0 [四分位间范围(IQR),12.0,14.0],对于对照组,对照组的12.0(IQR,11.0,13.0)表示,该研究组有改善的结果。研究组的穿刺精度为100%(30/30),而对照组为76.66%(23/30)(p <0.05)。
有机电化学晶体管(OECTS)代表了一个新兴的设备平台,用于下一代生物电子学,这是由于对生物信号的独特增强和敏感性。用于实现无缝的组织 - 电源界面,以获得准确的信号获取,皮肤样柔软性和可伸缩性是必不可少的要求,但尚未将其赋予高性能OECT,这在很大程度上由于缺乏可拉伸的可拉伸性氧化还原活性半导体聚合物。Here, a stretchable semiconductor is reported for OECT devices, namely poly(2-(3,3 ′ -bis(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)-[2,2 ′ -bithiophen]-5)yl thiophene) (p(g2T-T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT的性能与最先进的表现。通过系统的特征和不同聚体的比较验证,该聚合物的关键设计特征是使高可伸缩性和高OECT性能结合的非线性骨架结构,中等的侧链密度和足够高的分子量。使用这种高度可拉伸的聚合物半导体,具有高归一化的跨导率(≈223s cm-1)和双轴可拉伸性高达100%应变,以高归一化的跨导率(≈223s cm-1)制造。此外,还展示了皮肤心电图(ECG)记录,它结合了内置放大和前所未有的皮肤的可比性。