抽象脑肿瘤是一组异常细胞。大脑被封闭在更刚性的头骨中。异常细胞生长并开始肿瘤。检测肿瘤是由于不规则的肿瘤形状而成为复杂的任务。所提出的技术包含四个阶段,这些阶段是病变增强,特征提取和用于分类,定位和分割的选择。磁共振成像(MRI)图像由于某些因素(例如摄取图像和磁场线圈波动)而嘈杂。因此,使用同态小波档案进行降噪。后来,使用非主导的排序遗传算法(NSGA)选择了InceptionV3预训练模型中提取的特征和信息特征。将优化的特征转发用于分类,然后将肿瘤切片传递给Yolov2-InceptionV3模型,设计用于肿瘤区域的定位,从而从深度偶联(混合-4)层的IntectionV3模型中提取特征并提供给Yolov2。将局部图像传递给麦卡洛克的卡普尔熵方法,以分割实际的肿瘤区域。最后,在三个基准数据库2018,Brats 2019和Brats 2020中验证了所提出的技术以进行肿瘤检测。所提出的方法在脑病变的定位,分割和分类中获得的预测得分大于0.90。此外,与现有方法相比,分类和分割结果优越。
摘要 脑肿瘤是一组异常细胞。大脑被包裹在更坚硬的头骨中。异常细胞生长并引发肿瘤。由于肿瘤形状不规则,肿瘤检测是一项复杂的任务。所提出的技术包含四个阶段,即病变增强、特征提取和选择以进行分类、定位和分割。磁共振成像 (MRI) 图像由于某些因素(例如图像采集和磁场线圈的波动)而带有噪声。因此,使用同态小波滤波器进行降噪。然后,使用非支配排序遗传算法 (NSGA) 从 inceptionv3 预训练模型中提取特征并选择信息特征。优化的特征被转发进行分类,之后肿瘤切片被传递到为肿瘤区域定位而设计的 YOLOv2-inceptionv3 模型,以便从 inceptionv3 模型的深度连接 (mixed-4) 层提取特征并提供给 YOLOv2。将定位图像传递给 McCulloch 的 Kapur 熵方法以分割实际肿瘤区域。最后,在三个基准数据库 BRATS 2018、BRATS 2019 和 BRATS 2020 上验证了所提出的技术以进行肿瘤检测。所提出的方法在脑病变的定位、分割和分类中取得了 0.90 以上的预测分数。此外,与现有方法相比,分类和分割结果更优。
摘要 卷积神经网络(CNN)在图像处理领域得到了广泛的应用,基于CNN的目标检测模型,如YOLO、SSD等,已被证明是众多应用中最先进的。CNN对计算能力和内存带宽要求极高,通常需要部署到专用的硬件平台上。FPGA在可重构性和性能功耗比方面具有很大优势,是部署CNN的合适选择。本文提出了一种基于ARM+FPGA架构的带AXI总线的可重构CNN加速器。该加速器可以接收ARM发送的配置信号,通过分时方式完成不同CNN层推理时的计算。通过结合卷积和池化操作,减少卷积层和池化层的数据移动次数,减少片外内存访问次数。将浮点数转换为16位动态定点格式,提高了计算性能。我们分别在 Xilinx ZCU102 FPGA 上为 COCO 和 VOC 2007 上的 YOLOv2 和 YOLOv2 Tiny 模型实现了所提出的架构,在 300MHz 时钟频率下峰值性能达到 289GOP。
抽象对象检测是体育视频分析中最常见的任务。此任务需要准确的对象检测,该对象检测可以处理各种大小的对象,这些物体部分被遮挡,照明较差或在复杂的环境中呈现。现场运动中的对象包括球员的团队和球检测;这是由于玩家的快速移动和关注对象的速度而造成的一项艰巨任务。本文提出了预先训练的Yolov3,基于深度学习的对象检测模型。我们准备了一个由四个主要实体组成的曲棍球数据集:1(AUS),2(BEL),曲棍球舞会和裁判员。我们构建了自己的数据集,因为没有现有的现场曲棍球数据集可用。实验结果表明,预先训练的Yolov3深学习模型通过修改该预训练模型的超参数来在该数据集上产生比较结果。关键字:体育视频分析,深度学习,Yolov1,Yolov2,Yolov3,对象检测
智能手机、智能家居、智能导航等都是人工智能(AI)在日常生活中的重要应用。人工智能最早出现于20世纪50年代,随着对它的认识和重新定义,人工智能逐渐被提出。目前,人工智能被定义为研究和开发用于模拟、扩展和增强人类智能的理论、方法、技术和应用系统的一门新技术科学(1)。我们目睹了人工智能的快速发展,其在医疗保健,特别是医学图像处理和分析方面的研究和应用方兴未艾。与更易于获取且采集过程更容易标准化的计算机断层扫描(CT)和磁共振成像(MRI)相比,正电子发射断层扫描(PET)更昂贵、获取范围更广,其更复杂的技术操作过程给标准化图像采集带来了困难。虽然AI在PET领域的研究和应用进展相对较慢,但由于PET作为分子影像的重要领域,AI在PET成像领域的应用正受到广泛的关注,成为研究热点。在技术层面,针对不同厂家、不同仪器型号、不同成像技术的PET扫描仪在成像过程中参数和质量的差异性,开展了图像后处理研究,包括图像标准化、归一化、小波变换、高斯变换、特征预处理等。AI赋能的分割技术进一步提高了AI特征的稳定性和AI研究的可重复性(2、3)。为了满足临床应用的需求,通过深入挖掘图像特征,结合人群和临床证据,构建机器学习模型,PET 中的 AI 已被开发用于病变检测和边界描绘、诊断和鉴别诊断、风险预测和预后评估,甚至预测临床基因或分子分型( 1 , 4 – 7 )。本研究主题包括 11 篇出版物,强调了 AI 如何支持 PET 图像处理和分析。最近,许多研究小组一直致力于将 AI 用于 PET 图像解释,例如病变检测。Kawakami 等人应用对象深度学习 (DL) 检测模型 You Only Look Once Version 2 (YOLOv2) 来检测 18 F-FDG PET 中的生理和异常摄取。)。)。结果表明,MIP 图像上的生理摄取被快速准确地识别(Kawakami 等人。YOLOv2 检测到的异常摄取与手动识别的覆盖率较高(Kawakami 等人。精确的检测和快速的反应将成为疾病诊断的有用工具。最大标准化摄取值 (SUVmax) 是解释图像和评估的最常用参数
很快,混合现实(MR)和人工智能(AI)技术变得越来越好。这意味着它们在各个领域都有新的和重要的应用,包括医疗,教育和工人培训。这些作者提出了一种新的方法,可以在共享的MR环境中使用Yolov4深学习模型,以便可以实时跟踪和确定对象。这项工作解决了使用基本和复杂的计算机方法诸如遮挡,动态照明和空间对齐等问题的事实,可以区分它。主要的MR工具Microsoft Hololens以及单个相机饲料有助于拟议的系统进行对象检测。根据MS COCO数据集的测试,Yolov4模型的性能优于Yolov2和Yolov3模型。平均平均精度(MAP)为0.988,Yolov4模型是快速且相当精确的。基于统计数据,该策略似乎使小组可以在MR设置中进行协作,以提供在线帮助,培训和基于模拟的学习。对系统的未来研究将使它在更广泛的情况下更加灵活,并能够更好地识别附近的对象。
图 1:AI/ML 技术的维恩图 ................................................................................................................ 9 图 2:Gartner 人工智能技术成熟度曲线 ................................................................................................ 12 图 3:由于 ML 分类算法的性质,即使是强大的测试也可能无法检测到缺陷。在此示例中,两个缺陷位于测试用例之间,因此未被发现。 ................................ 15 图 4:ML 组件开发生命周期 ...................................................................................................... 17 图 5:[25] 引入的快速梯度符号法,但也是一个可能具有误导性的示例 [26] ............................................................................................................................. 23 图 6:对抗性 T 恤可以避免被 YOLOv2 系统检测到 [27] .................................................................... 24 图 7:示例 ROC 曲线 ............................................................................................................................. 80 图 8:显示 ML 分类器(垂直线)和基本事实(红色代表 FALSE,绿色代表 TRUE)的二元分类器 ............................................................................................................. 81 图 9:准确率(左)是所有检测到的正例中真正例的比例,召回率(右)是所有基本事实正例中真正例的比例。 ........................................... 81 图 10:IoU = 0.5 的示例预测 .............................................................................................. 83 图 11:基于 CBI 的可靠性声明的示例 CAE 结构 .............................................................................. 87 图 12:使用贝叶斯推理可以增加对产品的信心 ...................................................................... 88 图 13:满足第 B.3.2.1 节中所述约束的两个示例先验分布 ......................................................................................................... 89 图 14:安全监视器架构 ............................................................................................................. 91 图 15:监视器可行性 ............................................................................................................................. 91
