在现代农业实践中,先进的机器学习技术在优化产量和管理方面起着关键作用。果园管理中的一个重大挑战是检测到树木上的苹果,这对于有效的收获计划和收益率估算至关重要。YOLO系列,尤其是Yolov8模型,它是用于对象检测的最新解决方案,但其在果园中的潜力仍未开发。解决这个问题,我们的研究评估了Yolov8在果园Apple检测中的能力,旨在设定基准。通过采用图像增强技术,例如曝光,旋转,马赛克和切口,我们将模型的性能提升到了最新的水平。我们进一步整合了多任务学习,还通过在地面上识别出苹果来增强苹果的检测。这种方法在评估指标之间产生了具有稳健精度的模型。我们的结果强调了Yolov8模型达到了果园Apple检测的领先标准。在接受树木和倒下的苹果发现训练时,当专门为前者接受培训时,它的表现优于苹果。认识到堕落的苹果不仅减少了废物,而且还可能表明有害生物活动,影响战略或凝视的决策并有可能提高经济回报。将尖端技术与农业需求合并,我们的研究展示了在深度学习中进行多任务学习在水果检测中学习的希望。
1,学生1计算机工程文凭1 JSPM的Rajarshi Shahu工程学院,理工学院,浦那,印度摘要:由于道路上的车辆越来越多,交通拥堵在国内和国际上都是典型的事件。由于重要的交叉点,由于常规的交通瓶颈而损失了很多小时。这使得需要有效的交通控制系统。随着城市汽车数量的增加,最持久的问题之一是交通管理。交通拥堵不仅增加了压力水平,并对我们的日常生活造成了更严重的破坏,而且还通过提高碳排放对环境产生了不利影响。日益增长的人口正在导致大城市面临严重的问题和日常运输相关的活动的重大延误。定期评估交通密度并采取相关操作需要有效的交通管理系统。尽管不同的车辆类型有自己的车道,但交通信号点的通勤等待时间并没有减少。为了在当前系统中解决此问题,建议的方法使用人工智能从信号中收集实时图像。为了有效的交通拥堵管理,此方法使用Yolov8图像处理方法计算交通密度。Yolov8算法以更高的精度检测几辆车辆。智能监控技术通过使用信号转换算法来协调时间分配并减少信号交叉点的交通拥堵来减少车辆的等待时间。因此,我们将付诸实践一个智能流量控制系统,该系统基于使用实时视频处理技术来评估交通密度。索引术语 - 信号切换算法,Yolov8,人工智能和交通灯系统
1人工智能(AI),机器学习(ML),深度学习(DL),计算机视觉(CV)和对象检测之间的关系。。。。。。。。。。。。4 2通过乘以网格单元中存在的ob ject的概率以及在预测和地面真相边界框之间与联合(iou)相交的概率来计算YOLO中的信心评分。。。。。。。。。。。。。。。。。。。。。。5 3边界框预测图。。。。。。。。。。。。。。。。。。。。。。。。。。。5 4 iou通用公式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 5 iou二进制公式(tp = true straine,fn = false n = false and and fp =假阳性。)6 6 YOLO架构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 7边界盒坐标损耗包含对象的网格单元。。。。。。。。。。。7 8包含对象的网格单元的边界框宽度和高度损失。。。。。。。。7 9包含对象的网格单元的置信分数损失。。。。。。。。。。。。。。。。7 10不包含对象的网格单元的置信分数损失。。。。。。。。。。。。。。7 11分类损失在网格细胞中存在对象。。。。。。。。。。。。。。。。。。。7 12目录结构,用于组织食物图像及其相应的标签,用于在Yolo模型中进行训练,验证和测试。。。。。。。。。。。。。。。。。。14 13各种食物类别的yolov5对象检测的精确构态曲线。。17 14 F1分数曲线Yolov5对象在各种食物类别上检测。。。。。。。。。17 15 Yolov5损失曲线和关键指标(精度,召回和地图)在时期。。。18 16混淆矩阵说明了Yolov5模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 17各种食物类别的yolov6对象检测的精确构度曲线。19 18 F1分数曲线Yolov6对象检测各种食物类别。。。。。19 19 Yolov6损失曲线和关键指标(精度,回忆和地图)。。。20 20混乱矩阵说明了Yolov6模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 21各种食物类别的yolov7对象检测的精确构度曲线。。21 22 22 F1分数曲线在各种食物类别上检测。。。。。。。。。21 23 Yolov7损失曲线和关键指标(精度,召回和映射)在时期。。。。22 24混乱矩阵说明了Yolov8模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 25在各种食物类别上用于yolov8对象检测的精确构度曲线。。23 26 F1在各种食物类别上检测Yolov8对象检测的得分曲线。。。。。。。。。23 27 Yolov8损失曲线和关键指标(精度,召回和映射)。。。。24 28混乱矩阵说明了Yolov8模型在分类不同的食物类别中的性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 29 YOLO模型的比较:检测速度和训练时间。。。。。。。。。。26 30跨关键评估大会的YOLO模型的全面绩效比较。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 31用户帐户注册提示用户输入其个人信息和健康数据以进行个性化卡路里跟踪。。。。。。。。。。。。。。。。。。。。。。29 32登录页面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 33带有输入接口的主页,具有使用设备相机捕获图像或从设备存储中上传现有图像的选项。。。。。。。。30 34卡路里跟踪页面,显示每日卡路里限制,当天消耗卡路里,详细的食物日志以及每月的日历,突出显示每日卡路里的摄入量。。。。31
机器学习模型在Web应用程序“ CrackSafe”开发中的应用在贝拉·普拉蒂维(Bella Pratiwi)建筑物墙壁上发现迷恋1 *伊斯兰大学45 Bekasi 1 Bekasi 1电子邮件通信:Bellaprtwii25@gmail.com摘要:本研究旨在分析AI和机器学习技术在CrackSafe Web应用程序中的应用,以检测构建构建构建构建构建的构建。定性方法用于了解房屋壁上裂谷检测中的挑战,需求和潜在解决方案。裂缝和非耐药性数据集图片用于使用Yolov8训练检测模型,并使用平均平均精度(MAP),F-1得分,精度和回忆对模型进行评估。结果表明,即使仍然有改进的空间,模型也可以很好地识别裂纹。此应用程序还成功地检测了垃圾邮件,显示了建筑物维护的潜力。部署过程涉及使用烧瓶将AI模型集成到网站中。裂缝安全开发有望提高建筑物维护的效率和安全性,并降低高运营成本。关键字:人工智能;机器学习;探伤; YOLOV8摘要:本研究旨在开发利用AI和机器学习的CrackSafe Web应用程序,该研究旨在分析在CrackSafe Web应用程序中的AI和机器学习技术的实施,以检测建筑结构中的裂缝。一种定性方法用于了解检测住宅壁裂缝的挑战,需求和潜在解决方案。使用Yolov8的裂纹和非裂缝图像的数据集用于训练检测模型,并使用平均平均精度(MAP),F-1得分,精度和召回进行模型评估。结果表明该模型可以很好地识别裂纹,尽管仍然有改进的余地。该应用程序还成功地检测了Spall,证明了建筑物维护的潜力。部署过程涉及使用烧瓶将AI模型集成到网站中。裂缝保护的发展有望提高建筑物维护的效率和安全性,并降低高运营成本。关键字:人工智能;机器学习;探伤; Yolov8文章信息:提交:2024-04-20 |接受:2024-09-30 |发布:2024-10-03版权所有©2024,作者。
1助理教授,234助理教授,印度卡纳塔克邦,卡纳塔克邦,贝达尔,贝拉加维,贝拉加维,卡纳塔克邦,印度卡纳塔克邦的班纳塔克邦的Guru Nanak Dev工程学院计算机科学与工程系,印度,印度摘要,通过有效的武器检测是现代安全系统中的重要武器探索。本研究使用Yolov8深学习模型介绍了AI驱动的武器检测系统。该系统在Roboflow武器检测数据集上进行了训练,以在实时视频提要或图像中准确识别和分类武器。通过利用先进的计算机视觉技术,该模型可以增强监视功能,减少响应时间并改善高风险环境中的安全措施。实验评估证明了高准确性和效率,这使该系统成为公共空间中自动化威胁检测的可靠解决方案。关键字:武器检测,人工智能(AI),深度学习(DL),Yolov8,监视系统,实时检测I.引言随着公共场所的越来越多的安全问题,实时武器检测已成为至关重要的必要性。传统的监视系统在很大程度上依赖手动监测,这容易受人为错误和效率低下。人工智能(AI)和深度学习(DL)纳入安全应用程序的整合已显着增强了自动化威胁检测,从而更快,更准确地识别了潜在风险。本研究重点是使用最新的对象检测算法Yolov8模型实施AI驱动的武器检测系统。通过利用Roboflow的深度学习技术和策划的数据集,该系统旨在实时从视频供稿或图像中实时识别武器。基于AI的武器检测AI驱动武器检测系统的重要性提供了几个关键优势:
摘要:合作,连接和自动化的移动性(CCAM)基础设施在理解和增强在复杂的城市环境中驾驶的自动驾驶汽车(AVS)的环境感知方面起着关键作用。但是,CCAM基础架构的部署需要有效地选择计算处理层和机器学习(ML)和深度学习(DL)模型的部署,以在复杂的Urban环境中实现AV的更大性能。在本文中,我们提出了一个计算框架,并分析了定制训练的DL模型(Yolov8)的有效性(YOLOV8)时,当部署在车辆边缘云层层面体系结构的不同设备和设置中时。我们的主要重点是了解DL模型在分层框架上部署过程中DL模型的准确性和执行时间之间的相互作用和关系。因此,我们通过在计算框架的每一层上通过Yolov8模型的部署过程来研究准确性和时间之间的权衡。我们考虑CCAM基础架构,即每一层的感觉设备,计算和通信。调查结果表明,部署的DL模型的性能指标结果(例如,0.842 map@0.5)保持一致,无论跨框架的任何层中的设备类型如何。但是,我们观察到,当DL模型遭受不同的环境条件时,对象检测任务的推理时间往往会减少。例如,Jetson AGX(非GPU)通过将推理时间减少72%来优于Raspberry Pi(non-GPU),而Jetson AGX Xavier(GPU)优于将Jetson AGX ARMV8(non-GPU)减少90%。在论文中提供了转移时间,预处理时间和设备的总时间Apple M2 Max,Intel Xeon,Tesla T4,Nvidia A100,Tesla V100等。我们的发现指示研究人员和从业人员选择最合适的设备类型和环境,以部署生产所需的DL模型。
摘要:背景:近年来,针对皮肤状况的计算机辅助诊断已取得了重大进展,主要是由人工智能(AI)解决方案驱动的。,尽管取得了这种进步,但支持AI的系统的效率仍然受到高质量和大规模数据集的稀缺性的阻碍,这主要是由于隐私问题所致。方法:本研究通过使用生成的对抗网络(GANS)创建具有不同痤疮严重程度(轻度,中度和严重)的人脸的合成数据集来规避与现实世界痤疮数据集相关的隐私问题。此外,三个对象检测模型 - Yolov5,Yolov8和detectron2-用于评估增强数据集检测痤疮的功效。结果:将StyleGAN与这些模型集成在一起,结果证明了平均平均精度(MAP)分数:Yolov5:73.5%,Yolov8:73.6%,检测2:37.7%。这些得分超过没有gan的地图。结论:这项研究强调了GAN在产生合成面部痤疮图像中的有效性,并强调了利用gans和卷积神经网络(CNN)模型的重要性,以进行准确的痤疮检测。
摘要。尤其是卷积神经网络(CNN)的应用大大增强了自动驾驶汽车的对象检测能力,因为人工智能(AI)的最新进展。但是,在高精度和快速处理之间达到车辆环境的平衡仍然是一个持续的挑战。拥有第二大全球人口的印度等发展中国家对道路情景引入了独特的复杂性。在印度道路上出现了许多挑战,例如独特的车辆和各种交通模式,例如自动 - 里克肖,仅在印度才能看到。本研究介绍了评估Yolov8模型的结果,与其他现有的Yolo模型相比,在印度交通状况中表现出了卓越的性能。检查使用了数据集,该数据集是根据班加罗尔和海得拉巴城市及其周边地区收集的数据编译的。调查的发现表明,Yolov8模型在解决印度道路状况的独特问题方面的工作状况如何。这项研究推动了为复杂的交通状况(例如在印度道路上发现的)设计的自动驾驶汽车的开发。
摘要:响应现代生活的忙碌速度,越来越需要智能手机网络应用程序来简化餐食的准备。我们的项目旨在通过开发由计算机视觉和机器学习等技术提供动力的复杂食谱建议系统来满足这一需求。主要目的是简化用户的烹饪体验,这些用户经常发现自己不确定自己在手头上烹饪的食材。通过利用计算机视觉技术,我们的系统可以准确识别用户可用的成分。然后使用机器学习算法对此信息进行处理,以生成量身定制的食谱建议。这种方法消除了对大量进餐计划或手动食谱搜索的需求,从而节省了用户的宝贵时间和精力。为了解决这个问题,我们准备了一个成分数据集,其中包含15个食品成分类别的图像12,558张图像。Yolov8对象检测模型用于检测和分类食品成分。此外,推荐系统是使用机器学习构建的。最后,我们的准确度为96%,这是令人印象深刻的。关键字:对象检测,Yolov8,FastApi,TF-IDF,Word2Vec。
摘要:如今,添加剂制造(AM)可以提供高价值的最终用途产品,而不是单个组件。这种进化需要整合多个工艺过程来实施多物质处理,更复杂的结构以及最终用户功能的实现。从这种高级AM技术中受益的一个重要产品类别是3D微电子。然而,整个制造程序的复杂性以及3D微电源产品的各种微观结构显着增强了由于制造缺陷而导致的产品故障的风险。为了应对这一挑战,这项工作介绍了基于深度学习和机器视觉的缺陷检测技术,以实时监视AM制造过程。我们提出了一种增强的Yolov8算法来训练能够识别和评估缺陷图像的缺陷检测模型。为了评估我们方法的可行性,我们将挤出3D打印过程作为应用程序对象,并为数据集量身定制,其中包括四个典型缺陷类别的总计3550张图像。测试结果表明,改进的Yolov8模型以每秒71.9帧的帧速率达到了令人印象深刻的平均平均精度(MAP50)为91.7%。
