Siruganur ,Trichy Abstract – Modern car insurance industries waste a lot of resources due to claim leakages, which determines the amount they pay. Currently,visual Inspections and Validations are done manually,which can delay the claim processes.Previous study have shown that classifying images is possible with a small data set,by transferring and re purposing knowledge from models trained for a different task. Our goal is to build a Car Damage classifier using a deep learning model that is able to detect the different damage types and give an accurate depiction given a car image. However, due to the limiting set of data, it can be result in being a determining factor.Training a Convolutional Network from scratch (with random initialization) is difficult because it is relatively rare to have a large enough dataset.In this project we explore the problem of classifying images containing damaged cars to try and assess the monetary value of the damage. Because of the nature of this problem,classifying this data may prove to be a difficult task since no standardized dataset exists and some of the clases utilized might not be discriminative enough. Utilizing a pretrained YOLOv8 model,we trained a classifier in order to categorize the dataset,testing 3 different cases: damaged or not (damage vs whole),damage location (front vs rear vs side),damage level (minor vs moderate vs severe). Index Terms - YOLO model,CNN
边缘机器学习技术进入智能交通拥堵控制系统,利用高级对象检测算法,预测性建模和动态信号优化的功能。在这个创新系统的核心位置是Yolov8,这是一种最先进的对象检测算法,它在迅速识别和分类的车辆,行人,骑自行车的人和其他路交通摄像头中的其他道路元素方面都符合实时交通摄像头供稿。通过准确检测和跟踪这些对象,系统可以就交通流量,信号时机和安全措施做出明智的决定,从而提高城市交通管理的整体效率和有效性。所提出的系统代表了解决交通拥堵的一种整体方法,将卷积神经网络(CNN)的能力结合在一起,用于拥塞检测,增强学习与近端政策优化(PPO)进行动态信号时机以及长期短期记忆(LSTM)网络(LSTM)网络进行预测性建模。高级算法的这种协同集成使系统能够适应实时的交通状况,最大程度地减少拥塞并优化现有基础架构的利用。2。文献综述,城市交通拥堵的持久问题促使研究人员和工程师之间的一致努力制定了创新的补救措施。将机器学习(ML)和人工智能(AI)方法纳入交通管理系统已成为一种有前途的方法。本评论调查了基于ML的城市交通管理的相关研究和进步,旨在解决其对社会,环境和经济的多方面影响。
犯罪现场调查通常发生在复杂的环境中,在复杂的环境中,可能会隐藏,遮挡或分散在混乱的背景中。传统的对象检测方法经常面临此类挑战,导致错过或不准确地识别关键的法医元素。本研究提出了一个自适应深度学习框架,旨在在复杂的犯罪现场中精确的对象检测。通过利用高级卷积神经网络(CNN),基于区域的CNN(R-CNN)和注意机制,提出的模型动态适应了不同的犯罪现场条件,无论大小,方向或遮挡,都可以有效地识别对象。框架集成了多尺度特征提取,上下文感知学习和自适应学习率,以提高准确性和鲁棒性。将Yolov8和掩码R-CNN合并用于实时检测和实例分段,该系统可确保对象定位和分类的高精度。对各种犯罪现场数据集进行了广泛的测试,证明了该模型的出色表现,平均平均精度(MAP)为92.5%,同时显着降低了误报和负面因素。这种适应性方法不仅简化了法医研究,而且还可以最大程度地减少人为错误,为执法机构提供了可靠,有效的工具。未来的研究将着重于将系统的功能扩展到3D犯罪现场重建和跨域法医分析。
针对传统的车牌识别方法精确和速度的缺陷所带来的挑战,已经引入了一种新颖的端到端深度学习模型。该模型在实际情况下采用Yolo-NAS的准确检测和识别。采用Yolo-NAS模型,我们的车牌识别方法涉及对各种数据集的全面培训,涵盖小规模,中和大尺度,以实现最佳的准确性。Yolo-Nas引入了一种创新的量化基本块,从而减轻了早期Yolo模型的关键限制。通过结合高级训练方法和训练后量化技术,进一步提高了性能。结合使用,Yolov8将车辆分类为特定类型,例如汽车或自行车。该排序算法为车辆分配了不同的身份号码,从而促进了无缝连接的相应检测到的车牌。此关联数据系统地存储在CSV文件中以供参考。为了可视化,EasyORC将部署以识别车牌上的字母数字字符。此识别输出在视觉上表示为已确定车辆上方的盒子。利用Yolo-NAS进行车牌检测,不仅可以确保卓越的准确性,而且还通过量化支持和战略准确的胶粘度权衡来优化性能,从而有助于更加精致,更有效的识别系统。我们为Yolo-NAS(小)模型获得的准确性为90.2%。使用Yolo-NAS进行车牌检测,我们能够开发一种将高速与精度相结合的模型。
摘要 - 将协作机器人集成到工业环境中的整合提高了生产率,但也强调了与操作员安全和人体工程学相关的重大挑战。本文提出了一个创新的框架,该框架集成了先进的视觉感知技术,实时人体工程学监测和行为树(BT)基于自适应的决策。与通常在孤立或静态上运行的传统方法不同,我们的方法结合了深度学习模型(Yolo11和缓慢地),先进的跟踪(无流感的卡尔曼滤波器)和动态的人体工程学评估(OWAS),提供了模块化,可扩展和适应性系统。实验结果表明,该框架在几个方面都优于先前的方法:检测姿势和动作的准确性,在管理人类机器人相互作用方面的适应性以及通过及时的机器人干预措施降低人体工程学风险的能力。尤其是,视觉感知模块比Yolov9和Yolov8具有优越性,而实时人体工程学的概念消除了静态分析的局限性。自适应角色管理是由行为树实现的,比基于规则的系统具有更大的响应能力,使该框架适合复杂的工业场景。我们的系统在掌握意图识别方面的准确性为92.5%,并成功地将人体工程学风险分类为实时响应能力(平均延迟为0.57秒),使及时的机器人指数术语 - 人类机器人合作,实时的eR-GONOMICS,实时的eR-GONOMICS,适应性的决策,视觉感知,视觉感知,是Haviour haviour tree Yolo,Yolo。
梨是最广泛消耗的水果之一,它们的质量直接影响消费者的满意度。表面缺陷,例如黑点和小斑点,是梨质量的关键指标,但由于视觉特征的相似性,检测它们仍然具有挑战性。这项研究提出了Pearsurfacedects,这是一个自我结构的数据集,包含六个类别的13,915张图像,其中有66,189个边界框注释。这些图像是使用定制的图像采集平台捕获的。在数据集上建立了27种版本的27个最先进的Yolo对象探测器的Yolo对象检测器,Yolor,Yolov5,Yolov5,Yolov6,Yolov7,Yolov7,Yolov7和Yolov9。为了进一步确保评估的全面性,还包括了三个高级非Yolo对象检测模型,T-DETR,RT-DERTV2和D-FINE。通过实验,发现yolov4-p7的检测准确性在map@0.5达到73.20%,而Yolov5n和Yolov6n也显示出极大的潜力,可以进一步提高梨表面缺陷检测的准确性。本研究中用于模型基准的梨表面缺陷检测数据集和软件程序代码都是公开的,这不仅会促进对梨表面缺陷检测和分级的未来研究,而且还为其他水果大数据和类似研究提供了宝贵的资源和参考。
抽象目标识别是军事事务的优先事项。有必要识别移动的对象,不同的地形和景观创造识别障碍,这使此任务变得复杂。作战动作可以在一天中的不同时间进行,因此必须考虑照明角度和一般照明。有必要通过分割视频帧并识别和对其进行分类来检测视频中的对象。在工作中,作者提出了通过人工智能使用在拟议的信息技术框架内开发目标识别模块作为消防系统的组成部分。Yolov8模式识别模型家族用于开发目标识别模块。数据是从开源来源收集的,特别是从YouTube平台上的开源源中发布的视频录像。数据预处理的主要任务是在视频或实时-APC,BMP和TAMP上对三类对象进行分类。数据集是基于标记工具以及随后的增强工具的Roboflow平台形成的。数据集由1193个唯一图像组成 - 每个类别均匀。使用Google Colab资源进行培训。采用100个时代来训练模型。根据MAP50(平均平均精度为0.85),MAP50-95(0.6),精度(0.89)和召回(0.75)指标进行分析。这将是下一步。也有必要扩大军事设备对象的分类。存在巨大的损失,因为在研究中未考虑背景 - 基于未经技术的背景的验证数据(图像)训练模块。
摘要:SLAM是一种至关重要的技术,用于实现无人车辆的自主导航和定位。传统的视觉同时本地化和映射算法建立在静态场景的假设上,从而忽略了动态目标在现实世界环境中的影响。来自动态目标的干扰可以显着降低系统的定位精度,甚至导致跟踪故障。为了解决这些问题,我们提出了一个名为S-Slam的动态视觉大满贯系统,该系统基于“同样和语义信息提取”。最初,引入了词汇描述符来描述定向的快速特征点,从而提高了特征点匹配的精度和速度。随后,fasternet替换了Yolov8的骨干网络以加快语义信息提取。通过使用DBSCAN聚类对象检测的结果,获得了更精致的语义掩码。最后,通过利用语义面膜和表现约束,可以辨别和消除动态特征点,从而仅利用仅利用静态特征点进行姿势估计,并构建了不包括动态目标的密集3D地图。在TUM RGB-D数据集和现实世界情景上进行了实验评估,并证明了拟议算法在滤除场景中的动态目标方面的有效性。与Orb-Slam3相比,TUM RGB-D数据集的本地化准确性提高了95.53%。针对经典动态大满贯系统的比较分析进一步证实了通过lam的定位准确性,地图可读性和鲁棒性的提高。
摘要 - 自主在现实世界环境中进行自主导航,搜索和救援操作的特殊性,无人驾驶飞机(UAVS)需要全面的地图以确保安全。但是,普遍的度量图通常缺乏对整体场景理解至关重要的语义信息。在本文中,我们提出了一个系统来构建一个概率度量图,并富含从RGB-D图像中从环境中提取的对象信息。我们的方法结合了前端的最先进的Yolov8对象检测框架和后端的2D SLAM方法 - 制图师。为了有效跟踪从前端接口提取的语义对象类别类别,我们采用了创新的bot-sort方法。引入了一种新颖的关联方法来提取对象的位置,然后用度量图将其投影。与以前的研究不同,我们的方法在具有各种空心底部对象的环境中可靠地导航。我们系统的输出是概率图,它通过合并特定于对象的属性,包括类别的差异,准确定位和对象高度来显着增强地图的表示形式。已经进行了许多实验来评估我们提出的方法。结果表明,机器人可以有效地产生包含多个对象(尤其是椅子和桌子)的增强语义图。此外,在嵌入式计算机-Jetson Xavier AGX单元中评估我们的系统,以在现实世界应用中演示用例。索引项 - 语义映射,无人机,ROS,度量图。
摘要 — 通过声学干扰控制或禁用计算机视觉辅助自动驾驶汽车是车辆网络安全研究中的一个未解决的问题。这项工作探索了这个问题领域的一种新威胁模型:通过高速脉冲激光进行声学干扰以非破坏性地影响无人机传感器。初步实验验证了在 MEMS 陀螺仪传感器的谐振频率下激光诱导声波产生的可行性。实验室规模激光器产生的声波在商用现货 (COTS) 陀螺仪传感器读数中产生了 300 倍的本底噪声修改。无人机的计算机视觉功能通常依赖于这种易受攻击的传感器,并且可能成为这种新威胁模型的目标,因为声学干扰会导致摄像机运动模糊。通过从在不同声学干扰条件下捕获的无人机图像中提取模糊核来模拟激光诱导声学对物体检测数据集的影响,包括扬声器产生的声音以模拟更高强度的激光,并使用最先进的物体检测模型进行评估。结果显示,YOLOv8 在两个数据集上的平均准确率平均下降了 41.1%,表明物体检测模型的平均准确率与声学强度之间存在反比关系。具有至少 60M 个参数的物体检测模型似乎对激光诱导声学干扰具有更强的抵御能力。对激光诱导声学干扰的初步表征揭示了未来影响自动驾驶汽车传感器和下游软件系统的潜在威胁模型。
