摘要。运动图像分类是一项具有挑战性的任务,涉及多种类型的运动,在功能识别和次优检测结果方面遇到困难。这项研究采用了四个验证的模型,即残留网络50(Resnet-50),EfficityNet B7,密集连接的卷积网络121(Densenet-121),您只能查看一次版本8(Yolov8),以解决对100个不同运动图像类别进行分类的问题。数据集包含12200张体育图像,这是这项研究的强大实验基础。通过比较他们的表现,可以发现Resnet-50在训练集中表现出出色的性能,在验证集中的准确度为90.80%,88.75%的精度为88.75%。有效网络B7模型的训练精度为37.45%,推理的精度为62.42%。令人印象深刻的性能可能是由于其在处理特定的运动图像分类任务时的表示功能有限。densenet-121在培训中获得了71.791%的准确性,验证集获得了86.211%。与EfficityNet B7相比,其性能更好,这表明密集的连通性雅更适合提取图像特征。此外,Yolov8n模型在训练集的平均准确度中提供了出色的性能,验证集的平均精度为96.60%。这些结果展示了在运动图像分类和检测中yolov8n的圆润性能。总而言之,这项研究通过比较运动图像分类中不同算法的性能来解决解决复杂图像分类问题的宝贵见解。了解这些各种算法的优势和缺点对于更深入地理解图像分类任务和指导未来的研究努力至关重要。
摘要 — 本研究旨在提高残疾人士的可及性和包容性。我们关注残疾人士在沟通、行动和日常任务管理方面面临的具体日常挑战,并推出了 AssistEase,这是一种突破性的智能轮椅解决方案,旨在通过提高行动能力、沟通能力和日常任务管理来增强残疾人士的能力。AssistEase 将为世界各地的残疾人群体做出贡献,让他们能够在确保行动能力的同时管理日常任务并更轻松地沟通。AssistEase 提供控制选项,例如免提语音控制、传统手动控制、基于智能手机的蓝牙控制或创新的手势控制,旨在满足不同用户的偏好和需求。它使用语音识别、计算机视觉和触觉 [92] 反馈等技术来帮助用户在避开障碍物的同时安全导航。它集成了 Flutter、TensorFlow、YOLOV8、全球定位系统 (GPS)、蓝牙和 Apple Home Kit 等技术,以及包括 Arduino 和 Raspberry PI 在内的硬件组件。初步试验表明,有需要的用户在行动能力、通信和日常任务方面都有所改善。它在引导轮椅使用者方面达到了 95% 的精确度,同时保持机械臂约 90% 的准确度,健康监测和位置跟踪达到 89%。此外,它还提供了一个控制准确度达 90% 的用户友好型应用程序。通信设备在促进用户通信方面具有 92% 的准确度,而手势控制则达到 90% 的准确度。为了推进 AssistEase 智能轮椅技术,需要进一步研究和开发以增强其对特定残障人士的适应性。AssistEase 体现了致力于创造一个更加包容和繁荣的社会的承诺,专注于为所有能力水平的个人提供创新和包容。
车辆轨迹数据拥有有价值的信息,用于高级驾驶开发和交通分析。虽然无人机(UAV)提供了更广泛的视角,但视频框架中小规模车辆的检测仍然遭受低精度的折磨,甚至错过了。本研究提出了一个全面的技术框架,以进行准确的车辆轨迹提取,包括六个主要组成部分:视频稳定,车辆检测,车辆跟踪,车道标记检测,坐标转换和数据denosing。为了减轻视频抖动,使用了冲浪和绒布稳定算法。仅一旦使用X(Yolox)进行多目标车辆检测,就只能看一下一个增强的检测器,并在检测头中包含一个浅特征提取模块,以提高低级和小规模特征的性能。有效的通道注意力(ECA)模块在颈部之前集成,以进一步提高表现力。此外,在输入阶段还应用了滑动窗口推理方法,以防止压缩高分辨率的视频帧。Savitzky-Golay过滤器用于轨迹降低。验证结果表明,改进的Yolox的平均平均精度(地图)为88.7%,比原模型的增强5.6%。与Advanced Yolov7和Yolov8模型相比,所提出的方法分别将MAP@50增加到7.63%和1.07%。此外,已经开发了车辆轨迹数据集,并且可以在www.cqskyeyex.com上公开访问。大多数跟踪(MT)轨迹度量达到98.9%,单侧定位的根平方误差约为0.05 m。这些结果证实,所提出的框架是交通研究中高准确性车辆轨迹数据收集的有效工具。
摘要:利用太阳能是可持续发展和减轻贫困的改变游戏规则。太阳能不仅打击气候变化,而且还为经济机会打开了大门,并改善了服务不足地区的生活质量。太阳能电池板的安装对于应对诸如减少贫困和促进可持续发展目标等全球挑战至关重要。这项工作使用卫星和政府数据来绘制用于太阳能电池板的现场适用性,考虑到高程,风速,表面温度,土地使用土地覆盖,归一化的差分植被指数,一氧化碳一氧化碳水平,太阳能辐照,人口,与居民区,水域,水体,电力,电网和道路的距离。这项研究提供了一个全面的框架,用于评估太阳能电池板站点的适用性,整合环境和基础设施因素以优化放置。对印度拉贾斯坦邦地区的各种机器学习模型,例如XGBOOST,随机森林分类器和随机森林回归。XGBOOST的最佳模型的精度为0.982,精度为0.983,召回0.979,F1得分为0.981。同样,对于准确性,精度,召回和F1分别,测试值分别为0.934、0.882、0.985和0.931。选择XGBoost模型以创建太阳能电池板的适用性图。使用预先训练的Yolov8模型和Google Earth Pro图像混凝土屋顶。然后对屋顶图像进行剪辑和处理以确定边界。边缘检测和轮廓用于计算屋顶区域,根据可用屋顶空间估算太阳能电池板的数量及其潜在发电。本研究提供了一种干净可靠的能源解决方案,可以降低成本并改善欠发达和农村地区的生活质量。通过放置太阳能电池板,对化石燃料的依赖减少,这有助于减少温室气体排放并促进环境可持续性
(发布/收到:2024 年 6 月 1 日,喀布尔/接受:2024 年 6 月 12 日,发表/发布:2024 年 6 月 26 日) 摘要 由于世界人口的增长,车辆的使用日益广泛。在智能交通系统范围内,信息技术部门和交通运输部门以综合的方式工作,以解决车辆数量增加所带来的问题。使用传感器和摄像头获取的数据通过基于人工智能的信息技术进行分析,并用于自动驾驶汽车、安全、交通管理、导航和乘客信息系统。计算机视觉通过结合图像处理和深度学习技术,使机器能够从图像中提取有意义的模式和关系。计算机视觉技术应用于旅游、卫生、工业、国防、交通、服务、电子商务等许多领域。开发的应用程序为交通运输领域的各种挑战提供了解决方案。对于使用液化石油气 (LPG) 燃料的车辆,液化石油气罐中的气体易燃,存在潜在的爆炸危险,尤其是在城市的某些区域。医院、购物中心、酒店等提供室内停车服务的机构和组织禁止液化石油气车辆进入。禁令的控制方法是指派人员检查车辆后备箱。在本研究中,使用计算机视觉技术自动检测液化石油气燃料车辆。对土耳其不同省份的移动摄像头捕获的车辆图像数据进行了训练,并与四种不同的深度学习模型进行了比较。对模型进行训练和性能测试的结果表明,YOLOv8 模型比其他模型更有效,准确率为 0.994 mAP,速度为 11.6 毫秒。事实证明,它在现实生活中的实时监控方面是一种稳定的模型。可以预见,开发的系统可以促进计算机视觉技术的应用,并有利于国民经济、公共生命安全和环境保护。关键词:计算机视觉、深度学习、图像处理、LPG、车辆。
1,2,3,4,6学生(CSE)KIIT被认为是大学,印度布巴内斯瓦尔,5名学生(机械)KIIT被认为是大学,印度布巴内斯瓦尔,印度摘要:本文档详细介绍了新颖的智能城市交通管理系统的设计和实施,并实现了一个新颖的智能城市交通管理系统,共同构成了互联网的能力(Intelly of Things of Things and Things and Intelly of Things and Intelly of Things and Intelly of Things and Intell of Intelly(Iot of Things and Intell)和计算机。应对现代城市交通的多方面挑战,包括拥堵,安全问题和监管依从性,该系统采用了混合边缘云建筑。智能物联网设备的分布式网络,包括配备了设备AI处理,LIDAR,雷达和环境传感器的智能相机,可捕获实时流量数据。边缘计算节点在交叉点上进行了战略性部署,进行局部数据分析,从而可以立即做出响应,例如自适应交通信号调整和优先级的紧急车辆移动。同时,云平台汇总了来自所有边缘节点的数据,促进了全面的交通模式分析,预测性建模和全系统范围的优化策略。先进的计算机视觉算法,包括基于Yolov8的对象检测,车道跟踪和行人活动识别,可为交通动态和潜在违规行为提供关键的见解。在实时和历史流量数据上训练的机器学习模型,使系统能够动态调整信号时机和预测拥堵热点。与现有的流量基础架构和用于实时流量信息传播的用户友好的移动应用程序集成也是关键功能。本文档探讨了系统的体系结构,硬件和软件组件的相互作用,通信协议,开发生命周期以及缓解关键挑战(例如可扩展性,安全性和延迟)。简介:城市环境的复杂性日益增加,再加上车辆数量的不断增长,加剧了交通管理的挑战。传统系统通常证明不足以解决当代交通流量的动态和多方面的性质。本文档介绍了一个具有前瞻性的智能城市交通管理系统,该系统利用物联网,计算机视觉和云计算的综合优势来创建一个更聪明,响应和可持续的交通生态系统。核心目标是优化交通流量,改善所有道路使用者的道路安全性,最大程度地减少环境影响,并通过实时交通智能增强交通当局和公众的能力。通过战略性地部署边缘计算资源,该系统实现了关键决策的实时响应能力,而云平台为长期流量优化和战略计划提供了必要的可扩展性和分析能力。以下各节详细介绍了系统的架构,组成部分和实现路线图,强调
一般数据保护法规(GDPR)已成为一项具有里程碑意义的立法,重塑了数据隐私和网络安全的全球格局。在2018年5月执行,GDPR对全球组织产生了深远的影响,促使对网络安全实践进行了重新评估,以确保遵守严格的数据保护标准。本文对GDPR对网络安全的影响进行了全面综述,并特别强调了美国(美国)和欧洲采用的对比方法和实践。GDPR介绍了一组旨在保护个人的权利和隐私的强大原则,强调需要透明度,问责制和主动措施来保护个人数据。其域外范围将其影响扩大到欧洲边界之外,迫使全球业务遵守其法规。本文探讨了GDPR合规性带来的挑战和机遇,研究了美国和欧洲的组织如何导航不断发展的网络安全景观。在美国,在美国,在整个州的隐私法规都有不同的情况下,GDPR促使讨论有关联邦隐私法的制定。考虑到州和联邦法规之间在塑造网络安全策略中的相互作用,审查研究了美国企业采用的不同方法。相反,欧洲实践反映了对GDPR的积极反应,因为组织已经接受了规定中嵌入的原则以加强网络安全框架。本文调查了欧洲网络安全标准的发展,强调了成功的策略和潜在的改进领域。通过综合大西洋两岸的经验,这项综述有助于更深入地了解GDPR对网络安全的影响。它阐明了数据保护的不断发展的动态,为寻求增强其网络安全弹性的组织提供了见解,面对迅速变化的监管景观。
Vinayagar工程学院摘要:预先医疗保健系统的开发正在迅速发展,如今可用大量患者数据(即电子健康记录系统中的大数据)可用于设计心血管疾病的预测模型。数据挖掘或机器学习是一种发现方法,用于从各种角度分析大数据并将其封装到有用的信息中。“数据挖掘是对隐式,以前未知且可能有用的有关数据的无平凡提取”。临床决策通常是根据医生的直觉和经验做出的,而不是基于隐藏在数据库中的知识数据。这种做法会导致不必要的偏见,错误和过多的医疗费用,从而影响了提供给患者的服务质量。有很多方法可以出现医学误诊。医生是过错的还是医院的工作人员,对严重疾病的误诊可能会产生非常极端和有害的效果关键词:心脏病,心血管疾病,Yolo算法,Yolo算法,模糊C-MEAN
