美国政府,其任何机构,其任何雇员,支持承包商,或其任何雇员既不对任何信息,设备,产品或程序所披露的任何法律责任或责任,或承担任何法律责任或责任,或者承担任何法律责任或责任,或者表示其使用均不将使用其使用,或者代表其使用不会侵权私人权利。在此引用以商业名称,商标,制造商或其他方式参考任何特定的商业产品,流程或服务。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
燃料电池可能是将燃料转化为电能的最有效、最清洁的方式之一,因为它们避免了化学能转化为热能和热能转化为机械能的步骤。固体氧化物燃料电池 (SOFC) 是一种燃料电池,通常在 500 至 1000 C 之间运行。SOFC 中使用的标准材料是:氧化钇稳定氧化锆 (YSZ) 作为电解质,镍 - YSZ 金属陶瓷作为燃料电极,镧锶锰氧化物 (LSM) - YSZ 复合材料作为氧电极。1 尽管针对三种主要组件中的每一种都提出了多种具有增强初始性能的新型材料选择,但上述标准材料仍然是首选,因为它们在长期运行中具有耐用性。 2 例如,其他氧电极材料如镧锶钴铁氧体 (LSCF) 存在一些缺点,包括化学反应性和由于热膨胀系数 (TEC) 与标准 YSZ 的差异而导致的匹配性差。为此,已经提出了各种策略来改进标准氧电极。对于 LSM/YSZ 电极,YSZ 在中温 (IT) 范围 (700 C) 内的电导率相对较低,而 LSM 在此 IT 范围内主要是高极化电阻,限制了标准 SOFC 组件在 800 C 以下工作温度下的使用。为了降低基于 LSM - YSZ 的电池的工作温度,已经成功提出了选择性浸渍/过滤溶液基前体以形成纳米颗粒催化剂
燃料电池可能是将燃料转化为电能的最有效、最清洁的方式之一,因为它们避免了化学能转化为热能和热能转化为机械能的步骤。固体氧化物燃料电池 (SOFC) 是一种燃料电池,通常在 500 至 1000 C 之间运行。SOFC 中使用的标准材料是:氧化钇稳定氧化锆 (YSZ) 作为电解质,镍 - YSZ 金属陶瓷作为燃料电极,镧锶锰氧化物 (LSM) - YSZ 复合材料作为氧电极。1 尽管针对三种主要组件中的每一种都提出了多种具有增强初始性能的新型材料选择,但上述标准材料仍然是首选,因为它们在长期运行中具有耐用性。 2 例如,其他氧电极材料如镧锶钴铁氧体 (LSCF) 存在一些缺点,包括化学反应性和由于热膨胀系数 (TEC) 与标准 YSZ 的差异而导致的匹配性差。为此,已经提出了各种策略来改进标准氧电极。对于 LSM/YSZ 电极,YSZ 在中温 (IT) 范围 (700 C) 内的电导率相对较低,而 LSM 在此 IT 范围内主要是高极化电阻,限制了标准 SOFC 组件在 800 C 以下工作温度下的使用。为了降低基于 LSM - YSZ 的电池的工作温度,已经成功提出了选择性浸渍/过滤溶液基前体以形成纳米颗粒催化剂
封面:X 射线显微镜对不同材料(包括地质材料、电气材料和高级材料)产生的图像选择(从顶部开始顺时针方向)。分割显示 100 毫米碳酸盐岩芯的岩性分类。使用蔡司 Xradia 520 Versa X 射线显微镜上的 FPX 探测器进行成像。此渲染图由 ORS Visual SI Advanced 创建。蔡司 Xradia 520 Versa 成像的手机相机镜头组件。棕色部分是内部断层扫描的叠加。使用蔡司 Xradia 810 Ultra 对固体氧化物燃料电池 (SOFC) 的一部分进行成像。可以看到 SOFC 的三层。多孔顶部部分是阴极,它是一种镧-锶-锰氧化物 (LSM) 组合物。LSM 网络已根据其局部厚度进行颜色标记。蓝色表示薄,红色表示厚。样品的中心是电解质,由氧化钇稳定氧化锆 (YSZ) 制成。在样品的这一部分,图像显示的不是固体 YSZ,而是 YSZ 中存在的空隙。一个空隙被标记为橙色,因为它还连接到电池下部的孔隙网络。底层是阳极,它是镍和 YSZ 的多孔复合材料。YSZ 为蓝色,镍为红色。
就降低电解质的 ASR 而言,通过控制织构化 YSZ 膜中的晶界和孔隙率,可在 500°C 时分别获得 1.04 eV 和 0.02 S/m 的活化能和离子电导率。这些值低于块体材料,据报道块体材料的活化能和离子电导率分别为 1.18 eV 和 0.1 S/m [19]。此外,Si 上的外延 YSZ 膜在 500°C 时显示出 0.79 eV 的活化能和 ~0.003 S/m 的离子电导率,与织构化膜相比,性能进一步提高[20]。使用垂直排列纳米复合材料 (VAN) 系统也实现了电解质性能的显著改善。几种薄膜 VAN 体系 (YSZ、SrZO 3 和 Sm 掺杂的 CeO 2 ) 显示出超过一个数量级的离子电导率 [21-23],这指向了近期的室温电解质概念 [24]。然而,到目前为止,VAN 薄膜的优异性能仅在单晶基底上得到证实。
固体氧化物燃料电池(SOFC)的低kV表征,该固体由Yttrium稳定氧化锆(YSZ)和镍组成。镍粒子创建一个充当电子途径的网络;但是,某些镍颗粒可能不会连接到基质。这些通常称为死尼克尔;表征它们在样本中的存在和数量很重要。使用低加速电压,可以通过电荷对比度识别死尼克。独特的三位一体检测系统用于识别T1检测器提供Z对比度的三个阶段(YSZ,镍和孔),然后将其用于区分DeadIckel与T2检测器图像中渗透镍的区分,从而提供了SE对比度。在评估该方法期间,已经表明,渗透和非渗透镍之间的对比随着电压的增加而降低。
1。Bylinko L.: Integration of an urban transportation system as an element of mobility plans ........................................................................................................................................... 5 2.Warchoł-Jakubowska A.,Krejtz K.,SzczecińskiP。,Wisiecka K.,Duchowski A.T.,Krejtz I。Brozović V., Kezić D., Krile S., Brozović F.: A hardware platform for a maritime collision avoidance system....................................................................................................... 31 4.KozłowskiM.,Czerepicki A.,Dzido p。:低计算功率微控制器控制的自动驾驶汽车模型的车道跟踪算法 Kozicki B., Skrabacz A.: A comparative analysis of injuries and deaths caused by road traffic accidents in Poland and selected EU countries ............................................................. 57 6. MałyszM.,Tomczak P.,Szmytkie R.,Jurkowski W。:基于wroclaw凝聚中的核心层面环境连接的示例,可访问巴士运输的空间区别 węgrzynT.,szczucka-lasota B.,Szymczak T.,olazarz B.,Piwnik J.KozłowskiM.,Czerepicki A.,Dzido p。:低计算功率微控制器控制的自动驾驶汽车模型的车道跟踪算法Kozicki B., Skrabacz A.: A comparative analysis of injuries and deaths caused by road traffic accidents in Poland and selected EU countries ............................................................. 57 6.MałyszM.,Tomczak P.,Szmytkie R.,Jurkowski W。:基于wroclaw凝聚中的核心层面环境连接的示例,可访问巴士运输的空间区别 węgrzynT.,szczucka-lasota B.,Szymczak T.,olazarz B.,Piwnik J.MałyszM.,Tomczak P.,Szmytkie R.,Jurkowski W。:基于wroclaw凝聚中的核心层面环境连接的示例,可访问巴士运输的空间区别węgrzynT.,szczucka-lasota B.,Szymczak T.,olazarz B.,Piwnik J.Juzek M., Słowiński P.: The impact of accelerometer mounting on the correctness of the results obtained in NDT-type tests ..................................................................................... 97 9.Shkvar Ye., Kandume J., Redchyts D.: The key role of modern aerodynamic trends in increasing the energy efficiency of high-speed vehicles........................................................ 107 10.Odachowska-Rogalska E.
电场和磁场为无机材料的合成、加工和微观结构调整提供了额外的自由度。[1] 与传统烧结技术相比,电流辅助烧结 (ECAS) 技术因显着增强和加速了烧结动力学而具有极好的前景,在先进材料的加工中非常有前景。[2 – 7] 从 100 多年前的第一项专利开始,如今专利和文献中描述了 50 多种不同 ECAS 技术原理。[3] 通常,可通过以下方式实现高加热速率和低停留时间的短期烧结:1) 在导电工具中间接加热非导电粉末,通过焦耳效应加热并将热量传导给粉末; 2) 通过感应或热辐射间接加热非导电粉末,直至达到起始温度,此时电流开始流过样品,因此可以直接加热;3) 通过焦耳效应直接将能量耗散在样品内,直接加热导电粉末;4) 通过样品突然释放存储在电容器中的能量,超快速直接加热导电粉末。粉末和工具材料的电导率主要决定样品是直接加热还是间接加热。金属、合金和特殊陶瓷材料,如 TiC、TiN、Ti(C,N)、MAX 相(M = 过渡金属,A = A 组元素,X = C 或 N)、WC、TiB2 和 ZrB2,作为超高温陶瓷 (UHTC),可以在场辅助烧结技术/放电等离子烧结 (FAST/SPS) 模式下直接加热,因为它们的电导率比通常用作工具材料的石墨的电导率高几个数量级。反之亦然,大多数氧化物(Al2O3、ZrO2、YSZ、MgO、CeO2、掺杂钆的二氧化铈 [GDC] 等)和其他陶瓷,如 BN、Si3N4、SiC 和 B4C,由于其低电导率,则间接加热。通过施加单轴压力可以进一步提高 ECAS 技术的效率,这还可以支持烧结动力学,从而能够降低烧结温度
2011-2013),项目编号:10-ADV1367-04,项目标题:基于YSZ的多孔管状阳极支持和用于固体氧化物燃料电池的密集的单粒电解质层的开发,资金授权授权:NSTIP,预算,预算:19400,000 SR。角色:PM2013-2015),项目编号:AT-32-21,项目名称:用于氢气分离及其水热稳定性的纳米晶复合氧化物氧化物膜,KACST,预算:9,800,000 SR。 Role: PM 2013 to 2015), Project no: KACST ARP 34-79, Project Title: Self-Assembly of Janus-Dendrimers into Nanostructured Supramolecular Architectures, Funding Authority: KACST, Budget: SR 1,306,000.00 SR, Role: Co-I 2013 to 2015, Project no: KAP-11-616, Title: Molybdenum (Mo) based Dispersed重油升级的催化剂,角色:共同投资者,资金管理局:KACST,预算:1,462,000 SAR。角色:CO-I2013-2015,项目编号:12-Ene3204-04,标题:表面改装的铅硫代基因异质结构的太阳能收获,资金授权机构:NSTIP:预算,预算:1984,200 SAR。1)2016年3月 - 2018年3月,项目号nstip,15-Ene4617-04,角色:Co-I。2018年4月至4月2021年,多孔结构对太阳能热量储能材料的影响,PI,H。Zahir,Co.-I:M。Maslehuddin,Amir al-Ahmed,M。M. M. Rahman,DSR/ dsr/ in171036,资金授权:DSR,DSR,KFUPM,Budgupm,预算:300,000.00 sar。角色:PM2020年4月至2023年3月,LACO3OH NANOPRISM:光致发光和有毒的NOX降低特性”(DF191-Corere-109)资金授权机构:DSR,KFUPM,PI,H。Zahir预算SR。299,835。角色:PM2020年4月至2023年3月,层次多孔和空心MGO微球用于太阳能储能”(DF191-Corere-107)资金授权机构:DSR,KFUPM,PI,H。Zahir,H。Zahir,预算SR。279,940。279,940。角色:PM2019年4月至2022年4月,小说(Co-,Ni)-Calixarenes作为重油升级的分散催化剂,Mohammad Mozahar Hossain; Co-I:Hasan Zahir博士,Shaikh Abdur Razzak博士; Sagir Adamu博士,DF181018; 3年,资金管理局:DSR,KFUPM。预算:299,910.00 SAR。角色 - co-i
(a)节省能源或水的行动,表现出势能或节水,并促进能源效率,这将无法引起室内或室外浓度的显着变化。这些行动可能涉及对个人(例如建筑商,所有者,顾问,制造商和设计师),组织(例如公用事业)和政府(例如州,地方和部落)的财务和技术援助。涵盖的动作包括但不限于气候化(例如绝缘和更换门窗);降低恒温器设置;将计时器放置在热水热水器上;安装或更换节能照明,低流水管固定装置(例如水龙头,厕所和淋浴喷头),供暖,通风,空调系统以及电器;滴灌系统的安装;发电机效率和设备效率评级的提高;车辆和运输的效率提高(例如机队的更换);电源存储(例如飞轮和电池,通常不到10兆瓦);运输管理系统(例如交通信号控制系统,汽车导航,速度摄像头和自动板号识别);开发节能制造,工业或建筑实践;以及小规模的能源效率和保护研究与发展以及小规模的试点项目。涵盖的行动包括建筑物的翻新或新结构,只要它们发生在先前受到干扰或发达的地区。涵盖的行动可能涉及商业,住宅,农业,学术,机构或工业部门。涵盖的行动不包括规则制定,标准安排或拟议的DOE立法,除了本附录B5.1(b)中列出的那些行动。(b)涵盖的行动包括为消费产品和工业设备建立节能标准的规则制定,但前提是行动不会:(1)有可能导致制造基础设施的重大变化(例如,建造具有相当相关的地面干扰的新制造工厂); (2)涉及有关可用资源(例如稀有或有限原材料)的替代用途的重大未解决的冲突; (3)有可能导致处置材料的处置显着增加,这对人类健康和环境带来了重大风险(例如RCRA危险废物);或(4)有可能导致州或地区的能源消耗大幅增加。