1 柏林夏里特医学院(柏林自由大学、柏林洪堡大学和柏林卫生研究所的企业成员),精神病学和心理治疗系,伯恩斯坦计算神经科学中心,德国柏林;2 柏林工业大学 IV 学院 - 电气工程和计算机科学,德国柏林;3 柏林自由大学教育与心理学系,德国柏林;4 智力科学,卓越研究集群,德国柏林;5 社会与预防医学,体育与健康科学系,院内单位“认知科学”,人文科学学院,勃兰登堡健康科学学院,服务研究和电子健康研究领域,波茨坦大学,德国波茨坦; 6 德国曼海姆海德堡大学医学院中央精神卫生研究所儿童和青少年精神病学和心理治疗系;7 爱尔兰都柏林都柏林圣三一学院医学院和圣三一学院神经科学研究所精神病学学科;8 英国伦敦国王学院精神病学研究所、心理学神经科学 SGDP 中心人口神经科学和精准医学中心 (PONS);9 德国海德堡大学医学院中央精神卫生研究所认知和临床神经科学研究所;10 德国曼海姆曼海姆大学社会科学学院心理学系;11 法国巴黎巴黎萨克雷大学 CEA NeuroSpin;12 美国伯灵顿佛蒙特大学精神病学和心理学系; 13 诺丁汉大学彼得·曼斯菲尔德爵士成像中心物理与天文学学院,英国诺丁汉; 14 联邦物理技术研究所,柏林,德国; 15 国家健康与医学研究所、INSERM U A10 “Trajectoires développementales en psychiatrie”巴黎-萨克莱大学、巴黎-萨克莱高等师范学院、法国国家科学研究中心、法国伊维特河畔吉夫博雷利中心; 16 AP-HP 索邦大学,儿童和青少年精神病学系,Pitié-Salpêtrière 医院,法国巴黎; 17 法国埃唐普 EPS Barthélémy Durand 精神病学系; 18 德国柏林洪堡大学 Charite Mitte 校区精神病学和心理治疗系 PONS 研究小组; 19 疾病神经退行性疾病研究所,UMR 5293,CNRS,CEA,波尔多大学,波尔多,法国; 20 蒙特利尔大学医学院和圣贾斯汀大学中心医院精神病学系,蒙特利尔,
标题 广泛的人类发育系统发育揭示了多变的胚胎模式 作者 Tim HH Coorens 1* 、Luiza Moore 1,2* 、Philip S. Robinson 1,3 、Rashesh Sanghvi 1 、Joseph Christopher 1 、James Hewinson 1 、Alex Cagan 1 、Thomas RW Oliver 1,4 、Matthew DC Neville 1 、Yvette Hooks 1 、Ayesha Noorani 1 、Thomas J. Mitchell 1,4,5 、Rebecca C. Fitzgerald 6 、Peter J. Campbell 1 、Iñigo Martincorena 1 、Raheleh Rahbari 1 、Michael R. Stratton 1† * 共同第一作者 † 通信地址:mrs@sanger.ac.uk (MRS) 附属机构 1. 威康桑格研究所,欣克斯顿,CB10 1SA,英国 2. 剑桥大学病理学系,剑桥,CB2 0QQ,英国。 3. 剑桥大学儿科系,剑桥,CB2 0QQ,英国。 4. 剑桥大学医院 NHS 基金会,剑桥,CB2 0QQ,英国。 5. 剑桥大学外科系,剑桥,CB2 0QQ,英国。 6. 剑桥大学生物医学园区 MRC 癌症部,剑桥,CB2 OXZ,英国 摘要 从受精卵开始,发育和成人人体内的所有细胞都会不断获得突变。两个不同细胞之间共享的突变意味着共享祖细胞,因此可以用作谱系追踪的自然标记。在这里,我们利用来自多个器官的 511 个激光捕获显微切割样本的全基因组测序,重建了来自三个成人个体的正常组织的广泛系统发育。从系统发育推断出的早期胚胎祖细胞对成人身体的贡献比例通常不同,这种不对称程度因人而异,前两个重建细胞的比例从 56:44 到 92:8 不等。不对称也贯穿后续细胞代,并且同一个体的不同组织之间可能存在差异。系统发育还解决了空间胚胎起源和组织模式的问题,揭示了人类大脑发育的空间效应。结合 11 名男性的数据,我们确定了体细胞和生殖细胞分裂的时间,最早观察到的分离发生在第一次细胞分裂时。这项研究表明,尽管达到了相同的最终组织模式,但早期的瓶颈和谱系承诺会导致个体内部和个体之间的胚胎模式存在很大差异。简介 成年人的所有细胞都来自一个受精卵,在胚胎和胎儿发育过程中,经过精心策划的细胞分裂、细胞运动和细胞分化,并持续一生。追踪细胞谱系可以阐明这些基本的发育过程,并已广泛应用于模型生物。早期的谱系追踪实验依赖于光学显微镜 1 ,一种
本研究得到国家重点研发计划(2018YFB1801101)、国家自然科学基金(61960206006)、江苏省科技攻关计划(工业前瞻性与关键技术)BE2022067 和 BE2022067-1、欧盟 H2020 RISE TESTBED2 项目(872172)、欧盟 H2020 ARIADNE 项目(871464)、欧盟 H2020 RISE-6G 项目(101017011)以及美国国家科学基金会(CCF-1908308 和 CNS-2128448)的支持。还要感谢毛希晨、卜英兰、季文协、周子豪、杨越、辛力建、常恒泰和黄多贤,他们在本工作中提供了宝贵的帮助和建议。C.-X.王(通讯作者)、尤晓红(通讯作者)、高晓倩、朱晓明、李志雄、张晨和黄艳梅均就职于东南大学信息科学与工程学院国家移动通信研究实验室,南京 210096,中国,以及紫金山实验室,南京 211111,中国(电子邮件:{ chxwang, xhyu, xqgao, xm zhu, lizixin, chzhang, huangym } @seu.edu.cn)。H. M. Wang 就职于东南大学信息科学与工程学院和毫米波国家重点实验室,南京 210096,中国,同时也就职于紫金山实验室普适通信研究中心,南京 211111,中国(电子邮件:hmwang@seu.edu.cn)。Y. F. Chen 就职于英国华威大学工程学院,考文垂 CV4 7AL,英国(电子邮件:yunfei.chen@warwick.ac.uk)。H. Haas 就职于英国思克莱德大学电子电气工程系 LiFi 研究与开发中心,格拉斯哥 G1 1XQ,英国(电子邮件:harald.haas@strath.ac.uk)。J. S. Thompson 就职于英国爱丁堡大学工程学院数字通信研究所,地址:爱丁堡 EH9 3JL,英国(电子邮件:john.thompson@ed.ac.uk)。E. G. Larsson 就职于瑞典林雪平大学电气工程系(ISY),地址:581 83 Linköping,瑞典(电子邮件:erik.g.larsson@liu.se)。M. Di Renzo 就职于法国巴黎萨克雷大学、法国国家科学研究院、中央理工学院、信号与系统实验室,地址:3 Rue Joliot-Curie,91192 Gif-sur-Yvette,法国。(marco.di-renzo@universite-paris-saclay.fr) W. Tong 就职于华为技术有限公司无线先进系统和能力中心,地址:加拿大渥太华,ON K2K 3J1(电子邮件:tongwen@huawei.com)。P. Y. Zhu 就职于华为技术加拿大有限公司,地址:加拿大渥太华,ON K2K 3J1(电子邮件:peiying.zhu@huawei.com)。X. Shen 就职于加拿大滑铁卢大学电气与计算机工程系,滑铁卢,ON N2L 3G1(电子邮件:sshen@uwaterloo.ca)。H. V. Poor 就职于美国新泽西州普林斯顿大学电气与计算机工程系,普林斯顿 08544(电子邮件:poor@princeton.edu)。L. Hanzo 就职于英国南安普顿大学电子与计算机科学学院,南安普顿 SO17 1BJ(电子邮件:lh@ecs.soton.ac.uk)
这项工作得到了国家重点研发计划(2018YFB1801101)、国家自然科学基金(61960206006)、江苏省科技攻关计划(工业前瞻性与关键技术)BE2022067 和 BE2022067-1、欧盟 H2020 RISE TESTBED2 项目(872172)、欧盟 H2020 ARIADNE 项目(871464)、欧盟 H2020 RISE-6G 项目(101017011)以及美国国家科学基金会(CCF-1908308 和 CNS-2128448)的支持。同时还要感谢毛希晨、卜英兰、季文协、周子豪、杨越、辛利建、常恒泰和黄多贤,他们对本研究提供了宝贵的帮助和建议。C.-X. Wang(通讯作者)、XH You(通讯作者)、XQ Gao、XM Zhu、ZX Li、C. Zhang 和 YM Huang 都来自东南大学信息科学与工程学院国家移动通信研究实验室,南京 210096,中国,以及紫金山实验室,南京 211111,中国(电子邮箱:{ chxwang, xhyu, xqgao, xm zhu, lizixin, chzhang, huangym } @seu.edu.cn)。 HM Wang 就职于东南大学信息科学与工程学院和毫米波国家重点实验室,南京 210096,中国,同时也就职于紫金山实验室普适通信研究中心,南京 211111,中国(电子邮件:hmwang@seu.edu.cn)。YF Chen 就职于英国华威大学工程学院,考文垂 CV4 7AL,英国(电子邮件:yunfei.chen@warwick.ac.uk)。H. Haas 就职于英国思克莱德大学电子电气工程系 LiFi 研究与开发中心,格拉斯哥 G1 1XQ,英国(电子邮件:harald.haas@strath.ac.uk)。JS Thompson 就职于英国爱丁堡大学工程学院数字通信研究所,爱丁堡 EH9 3JL,英国(电子邮件:john.thompson@ed.ac.uk)。 EG Larsson 就职于瑞典林雪平大学电气工程系 (ISY),邮编 581 83 Linkoping,电子邮箱:erik.g.larsson@liu.se。M. Di Renzo 就职于巴黎萨克雷大学、法国国家科学研究院、中央理工学院、信号与系统实验室,邮编 3 Rue Joliot-Curie,邮编 91192 Gif-sur-Yvette,法国。(marco.di-renzo@universite-paris-saclay.fr) W. Tong 就职于加拿大华为技术有限公司无线先进系统与能力中心,邮编 渥太华,邮编 ON K2K 3J1,加拿大。(电子邮件:tongwen@huawei.com)。 PY Zhu 就职于华为技术加拿大有限公司,加拿大安大略省渥太华 K2K 3J1(电子邮件:peiying.zhu@huawei.com)。X. Shen 就职于滑铁卢大学电气与计算机工程系,加拿大安大略省滑铁卢 N2L 3G1(电子邮件:sshen@uwaterloo.ca)。HV Poor 就职于普林斯顿大学电气与计算机工程系,美国新泽西州普林斯顿 08544(电子邮件:poor@princeton.edu)。L. Hanzo 就职于电子与计算机科学学院,南安普顿大学,南安普顿 SO17 1BJ,英国(电子邮件:lh@ecs.soton.ac.uk)
时间倒转对称性的kagome超导性作者:汉宾·邓(Hanbin Deng)1 *,朱wei liu 1 *,Z。Guguchia2 *,Tianyu Yang 1 *,Jinjin liu 3,4 * Frédéric Bourdarot 9 , Xiao-Yu Yan 1 , Hailang Qin 7 , C. Mielke III 2 , R. Khasanov 2 , H. Luetkens 2 , Xianxin Wu 10 , Guoqing Chang 6 , Jianpeng Liu 11 , Morten Holm Christensen 12 , Andreas Kreisel 12 , Brian Møller Andersen 12 , Wen Huang 13 , Yue Zhao 1 ,Philippe Bourges 8,Yugui Yao 3,4,Pengcheng Dai 5,Jia-Xin Yin 1,7†隶属关系:1 Southern科学技术大学物理系,中国广东,深圳。2个宇宙旋转光谱实验室,保罗·施雷尔学院(CH-5232),瑞士维利根PSI。3量子物理中心,高级光电量子体系结构和测量(MOE)的主要实验室(MOE),北京理工学院,中国北京理工学院物理学院。4北京纳米植物和超细光电系统的北京关键实验室,中国北京理工学院。5美国休斯敦莱斯大学物理与天文学系77005,美国。6物理学和应用物理学,新加坡Nanyang Technological University的物理和数学科学学院,新加坡637371。7广东港量子科学中心大湾大湾地区(广东),中国深圳。8帕里斯 - 萨克莱大学,CNRS-CEA,LaboratoireLéonBrillouin,91191,法国Gif Sur Yvette,法国。9UniversitéGrenoble Alpes,CEA,INAC,MEM MDN,F-38000 Grenoble,法国。*这些作者为这项工作做出了同样的贡献。10理论物理学的CAS关键实验室,理论物理研究所,中国科学院,中国北京。11上海大学物理科学技术学院,上海2011年,中国。12尼尔斯·博尔研究所,哥本哈根大学,丹麦哥本哈根DK-2200。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。 †相应的作者。 电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。†相应的作者。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。
马主 N 马匹 Cde 值 骑师 体重 起源/育种者 练马师 表演 Mrs I. Corbani 1 Kaid Galeste b 14 31 Thomas Courtalon 54.5 58 H b 5 Seahenge-Piquetera/Mrs E. Poitevin F. Monfort 21天 (24)15p3p(23)3p4p4p Avatara SA 2 Dschingis River 2 - Yoann Barille 56.5 H b 4 Dschingis Secret-Belle Syrienne/Avatara SAM Brasme 184天 (24)7p Mrs F. Chenu 3 Jarite Fleury 13 15 Dylan Salmon a 54.5 56.5 F alfo6 Naaqoos-Anomane/Mrs F. Chenu Mrs F. Chenu 46天 (24)4p10p4p4p7p Mrs F. Chenu 4来源YVETTE(ECH。)5-Chloé小姐54 56.5 F B 5 Northlegal Grise的合唱团/MA Lebret F. Chenu 65d(24)Asah11p Roger-M Dupuis 5 (24)10P12P14P6P12P C.Germain 6 Lou Marina B 1 27 Luka Rousseau 56.5 F B 6 Kapgarde-Lou Emerald/Mc Germain T.Poché29d(24)11H5H2H5H5H5H6H6 Shaqab Racing J. Grassick 14d (24)9p8p7p15p5p E. Lecoiffier 8 God Save The Queen Y b 9 - Mickaël Berto 56.5 F b 6 Great Pretender-A Voted/Ecurie Cap Orne E. Lecoiffier 21d (24)9p7h3pAh3p E. Lecoiffier 9 Little Heart (ECH.) b 7 - Maximilien Justum 56.5 F b 5 Zanzibari-Little Royale/MH Langot E. Lecoiffier 21d (24)2pAh10p3p2p T. Poché-Caro 10 Etincelle Desjy b 15 - Sébastien Just 53 56.5 F bf 6 Kitkou-Kassadame/Mme C. Bodin T. Poché 24d (24)AhAh9hAh(23)7h Team Högdala AB 11 Heart of a Warrior b 16 - David Breux 56.5 H b 4 Gleneagles-Nimbin/SCEA Team Hogdala 法国 H. Shimizu 29d (24)3p Mrs. C. Brunetti 12 Sholokjack IRE Y b 6 - Miss Léa Bails 54.5 56 H b 9 Sholokhov-Another Pet/MJ Robinson Miss J. Le Stang 15d (24)Ah10hAhAs6s F. Guillossou 13 Jarjar de Montave b 10 - Miss Julia Lacroix 53.5 56 H b 6 König Turf-Sigit d'Acadour/MA Bonichon F. Guillossou 35d (24)As(23)8h Mrs. M. Defontaine 14 Rue Bleue ub 12 26.5 Enzo Corallo 55 F al 4 Churchill-Nova Step/Ecurie Haras du Cadran Mrs. M. Defontaine 36j (24)3p2p2p2p9p Y. Le Courtois 15 Lady Angelina 8 - Jérémy Moisan 54.5 F b 5 Masterstroke-Lady Dancer/MG Morosini Y. Le Courtois 未发表 J. Moon 16 Jonchère 3 - Gabriel Bon 54.5 F gr 6 Fly With Me-Vodka du Montceau/MS Berger J. Moon 未发表
MAGIC MARKETPLACE 将于 8 月 31 日至 9 月 2 日在拉斯维加斯举办展会,届时将加强其女装产品。MAGIC International 总裁兼 Advanstar Fashion Group 执行副总裁 Chris DeMoulin 表示:“重点在于推出新颖、令人兴奋的产品,以及如何让顾客重返门店。我们希望 8 月份的展会规模更大、更好、更成功。”我们一直在与参展商和零售商进行对话,以了解他们想要实现的目标。客户似乎正在适应在不同的经济环境中工作。这意味着人们会更积极主动,并试图将自己定位在最佳位置。随着旅行预算减少,客户希望从一次旅行中获得最大收益,紧张程度似乎有所提高,尤其是在展会压缩为三天的情况下。 “供应商调整策略和买家真正前来做生意都让我们感到鼓舞,”DeMoulin 表示,并指出,虽然个别零售商可能选择派出更少的买家,但更多的商店正在前来。MAGIC 的增强服务包括参展商和零售商之间更多的配对、更多的非正式交流机会以及更多致力于在每个类别内建立品牌关系的专业员工。2 月份实施的形式变化包括将配饰展带到 WWDMAGIC 的主厅,并在 MAGIC 的女装和男装区引入 Premium
