该器件设计由两组铝 IDT 组成,放置在具有 128° YX 切口的铌酸锂基板上。作为初步步骤,基于器件的几何周期 200 μm,模拟了器件的缩小单元域。模态分析确定了瑞利波的共振频率,该频率用于后续的谐波研究。两组 IDT 在该频率下受到激励,并分析了由此产生的驻波模式。还检查了器件在共振频率下的导纳。在将模型扩展到完整器件之前,进行了时间相关分析以研究波产生的瞬态阶段。
电阻率数据来自位于近距离电磁(TEM)位点(88个站点)和磁电纤维(MT)位点(165个站点)的电阻率数据,在一维关节反转中使用,以纠正主要由近乎表面的不均匀性引起的静态移位。从旋转不变的决定因素和平均值以及旋转变体的XY和YX表观电阻率和相位作为深度切片和横截面显示的旋转变体的结果以及旋转变体的结果。在MT数据的2D反转中,使用了横向电气(TE)和横向磁性(TM)模式的一维关节反转的静态移位因子。通过使用100Ωm和30Ωm均质的半空间初始模型来探索2D模型的收敛性和鲁棒性,该模型产生了相似的结果,并以1.0-1.9在1.0-1.9之间的横截面表示。
在 Linux 和 Windows 下执行群体遗传学分析的程序。分子生态资源,10 (3),564–567。https://doi. org/10.1111/j.1755-0998.2010.02847.x FAO。(2015 年)。在 BD Scherf 和 D. Pilling(编辑)中,《世界粮食和农业动物遗传资源状况第二份报告》(606 页)。粮农组织粮食和农业遗传资源评估委员会。https://doi.org/10.4060/I4787E Fu, YX (1997)。突变中性对种群增长、搭便车和背景选择的统计检验。遗传学,147 (2),915–925。 https://doi.org/10.1093/genetics/147.2.915 Gasigwa Sabimana, R.、Baenyi Simon, P. 和 Kizungu Vumilia, R. (2017)。
我们研究了霍尔斯坦扩展哈伯德模型的电子电子和电子 - phonon介导的配对,并在范霍夫填充物附近的kagome晶格上进行,我们研究了它们对电子配对状态的综合作用。我们发现,它们的组合可以在跨界区域促进异国情调的配对,在该区域中,填充物接近Van Hove的奇异性。尤其是在P型Van Hove填充时,E 1 U(P -Wave)和B 2 U(F Y 3 - 3 - 3 - 3 YX 2 -Wave)配对变得领先,在M -type van Hove flling,E 1 U和A 2 g(I -Wave)配对中得到了促进。此外,我们表明,由于费米表面的sublattice质地,电子 - 光子相互作用获得了显着的动量依赖性,从而可以促进非S波配对。我们对这些配对倾向进行了详细的分析,并讨论了对基于钒的Kagome超导体A V 3 SB 5的含义。
PO Box 157 萨尼基卢阿克市 Sanikiluaq NU, X0A 0W0 2020 年 1 月 7 日 哈姆雷特议会在 2019 年 12 月 19 日举行的例会上通过了一项继续支持余热可行性研究申请的动议。 WdpK|zDt xsM5/bsJ yx/ e5gh7j gzo3bshi bwN e5gh7j |N7MQLA vtmp4f wvJ3giz X6|vDts rxzi5 x|gtc4vwv8iD8NChx3iu5 cspn3i3j g5yCstu,x7ml x9Mt7mE x9MQxc|M3g wvJ3giCwJi4。 6}N7mn4gw5,1}N7mnTg,1iDxTg。 Sarah Kittosuk 提出动议,Dinah Kittosuk 附议,批准理事会支持余热可行性研究申请,并要求 SAO 撰写支持信。投票:6 票赞成,1 票反对,1 票弃权 W3fpKzAt xi}AtJ 动议通过 W3fpKzAt 动议 RCM 172-12-2019 与其等待 SAO 撰写支持信,我希望这能有所帮助,因为 SAO 要到 2020 年 1 月 20 日才会回来。谢谢 Johnny Manning 理事会秘书
1 格里斯大学格里斯药物发现研究所,布里斯班,昆士兰州 4111,澳大利亚; yan.xie4@gri ffi thuni.edu.au(YX);Y.Feng@gri ffi th.edu.au(YF);a.dicapua@gri ffi th.edu.au(ADC);t.mak@gri ffi th.edu.au(TM);miaomiao.liu@gri ffi th.edu.au(ML) 2 广西中医药大学广西中药药效研究重点实验室,南宁 530200,中国 3 地球和生物科学理事会,太平洋西北国家实验室,里奇兰,华盛顿州 99354,美国; garry.buchko@pnnl.gov 4 华盛顿州立大学分子生物科学学院,美国华盛顿州普尔曼 99164 5 西雅图儿童研究所全球传染病研究中心,美国华盛顿州西雅图 98109-5219;peter.myler@seattlechildrens.org 6 华盛顿大学儿科、全球卫生、生物医学信息学和医学教育系,美国华盛顿州西雅图 98195 * 通讯地址:r.quinn@gri ffi th.edu.au;电话:+ 61-41-871-3254
[图片来源:Eyesight] 视觉系统使人们能够从周围环境中获取信息。当眼睛的角膜和晶状体将周围环境的图像聚焦到眼后部的感光膜(称为视网膜)上时,视觉就开始了。眼睛的晶状体将光线聚焦到视网膜的感光细胞(也称为视杆细胞和视锥细胞)上,它们检测光子并通过产生神经冲动做出反应。这些信号由大脑的不同部分处理,从视网膜上游到大脑的中央神经节。刘 YO.、王 XL.、何 DH. 和程 YX。2021。背景:尽管在癌症治疗领域取得了巨大成就,但化疗和放疗仍然是癌症的主要治疗方式。然而,它们具有各种副作用,包括心脏细胞毒性、肾毒性、骨髓抑制、神经毒性、肝毒性、胃肠道毒性、粘膜炎和脱发,严重影响癌症患者的生活质量。植物具有极大的化学多样性和灵活的生物学特性,非常适合用作辅助疗法来减少癌症治疗的副作用。目的:本综述旨在全面总结植物化学物质改善癌症治疗副作用的分子机制及其潜在的临床应用。方法:我们从 PubMed、Science Direct、Web of Science 和 Google scholar 获取信息,并介绍了化疗药物和放射线引起毒副作用的分子机制。据此,我们总结了代表性植物化学物质在减少这些副作用方面的潜在机制。
1 德国海德堡大学曼海姆大学医学中心(UMM)医学院第一医学系,邮编 68167 曼海姆;rujia.zhong@medma.uni-heidelberg.de (RZ);schimanski.t@gmail.com (TS);feng.zhang@medma.uni-heidelberg.de (FZ);huan.lan@medma.uni-heidelberg.de 或 lh6402196@126.com (HL);alyssa.hohn@web.de (AH);qiang.xu@medma.uni-heidelberg.de (QX);mengying.huang@medma.uni-heidelberg.de (MH);zhenxing.liao@medma.uni-heidelberg.de (ZL);lin.qiao@medma.uni-heidelberg.de (LQ); zhen.yang@medma.uni-heidelberg.de (ZY); yingrui.li@medma.uni-heidelberg.de (YL); zhihan.zhao@medma.uni-heidelberg.de (ZZ); xin.li@medma.uni-heidelberg.de (XL); roselena1996@gmail.com (LR); sebastian9876@googlemail.com (SA); lasse-maywald@web.de (LM); jonasnelsonmueller@googlemail.com (JM); hendrik.dinkel@yahoo.de (HD); yannick.xi@medma.uni-heidelberg.de (YX); siegfried.lang@umm.de (SL); ibrahim.akin@umm.de (IA) 2 DZHK(德国心血管研究中心),合作伙伴网站,68167 曼海姆,德国; narasimha.swamy@mdc-berlin.de (NS); mandy.kleinsorge@gwdg.de (MK); sebastian.dieck@mdc-berlin.de (SD); lukas.cyganek@gwdg.de (LC) 3 西南医科大学心血管研究所,教育部医学电生理重点实验室,四川省医学电生理重点实验室,泸州 646000,中国 4 苏黎世大学心脏中心心脏病学系,Rämistrasse 100,8091 苏黎世,瑞士;ardan.saguner@usz.ch (AS); first.duru@usz.ch (FD) 5 海德堡大学人类遗传学研究所人类遗传学系,69120 海德堡,德国; johannes.jannsen@uni-heidelberg.de 6 马克斯·德尔布吕克分子医学中心,13125 柏林,德国 7 哥廷根大学医学中心心脏病学和肺病学诊所干细胞科,37075 哥廷根,德国 8 波鸿鲁尔大学贝格曼希尔大学医院,44789 波鸿,德国;ibrahim.elbattrawy2006@gmail.com * 通讯地址:xiaobo.zhou@medma.uni-heidelberg.de;电话:+49-621-383-1448;传真:+49-621-383-1474 † 这些作者对本文的贡献相同。‡ 这些作者为高级作者。
背景:2型糖尿病(T2DM)患者的发病率,死亡率和护理费用升高。血糖(SMBG)的数字自我监控可以自动上传数据到应用程序,与医疗保健提供者共享数据,减少错误并帮助长期糖尿病管理。目的:本研究旨在评估基于数字SMBG对T2DM患者在家中血糖的数字糖尿病管理技术的有效性。方法:在PubMed,Embase,Web of Science,中国国家知识基础设施,Wanfang,中国生物医学文献数据库和Cochrane图书馆中进行了系统搜索,该文章是从每个数据库建立到2023年12月25日发布的文章。由2位研究人员(YX和NX)独立提取数据,并使用Cochrane偏见工具对单个试验中的偏见风险进行评级。使用Revman 5.3(Cochrane)进行了荟萃分析。结果:包括十二项研究,涉及1669名参与者。The meta-analysis found that in the digital diabetes management group, hemoglobin A 1c (mean difference [MD] –0.52%, 95% CI –0.63% to –0.42%; P <.001), fasting blood sugar (MD –0.42, 95% CI –0.65 to –0.19 mmol/L; P <.001), 2-hour餐后血糖(MD –0.64,95%CI –0.97至–0.32 mmol/L; P <.001)和BMI(MD –1.55,95%CI –2.92至–0.17 kg/m 2; p = .03)均得到了比较组的改进。结论:已显示数字糖尿病管理可有效地改善家庭环境中T2DM患者的血糖水平和BMI。试用注册:Prospero CRD42024560431; https://tinyurl.com/yfam3nms成功的数字健康干预措施的一个关键特征是患者经常进行SMBG,并得到了及时,个性化和响应良好指导的专门卫生保健专业人员的支持。
6 中国电力科学研究院,北京 100192,中国 *通信地址:xiang@scu.edu.cn (YX); lltscu@163.com (LL) 收稿日期:2024 年 6 月 21 日;接受日期:2024 年 8 月 9 日;https://doi.org/10.59717/j.xinn-energy.2024.100042 © 2024 作者。这是一篇根据 CC BY-NC-ND 许可开放获取的文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。引用:Xiang Y.、Li L.、Li R. 等,(2024)。设计灵活的可再生能源渗透电力系统以解决长期和短期交互推断。对于可再生能源渗透率较高的电力系统,必须结合储能等充足的灵活资源,实现能源的可持续发展。然而,在灵活资源的规划中,外部社会因素可以显著改变这些资源的演进路径。迫切需要一个模拟框架来整合以社会影响为代表的长期发展因素和物理能源框架内的短期运行特征。我们为电力系统的可持续发展提供技术支持,使模拟结果对未来的能源系统规划更加准确。针对缺乏外部社会因素建模数据的问题,提出了一种基于系统动力学的长期建模方法,以及一种考虑灵活性评估和优化的短期建模方法。长期的外部社会因素需要低碳系统,而短期关注涉及电力系统的实际拓扑以研究高灵活性。我们发现各种灵活性资源投资对电力系统灵活性和低碳的敏感性是解决这一矛盾的关键。在213节点灵活性测试系统中对电力系统进行了实证计算,包括15分钟和1分钟分辨率的实际数据。在碳减排政策出台约十年后,电池储能成为最大的灵活性投资。而其他灵活性资源,尤其是由于灵活性不饱和而产生的需求侧响应,也成为主要的临时投资资产。考虑到所提出的交互式推理框架,边际减排成本显着降低,碳交易不断降低减排成本。