摘要:我们通过实验演示了热电传感器与纳米天线的耦合,这是检测红外能量的另一种选择。我们制造并测试了两种基于 Yagi-Uda 技术的纳米天线设计(单元件和阵列)变体和一个单独的纳米热电结阵列。纳米天线经过调整,可在中心波长 1550 nm(193.5 THz)光学 C 波段窗口处运行和响应,但它们在受到各种波长(650 nm 和 940 nm)激光激发时也表现出共振响应。纳米天线中的辐射感应电流与纳米热电传感器耦合,根据塞贝克效应产生了电位差。相对于参考纳米天线的均匀热测量,实验证实了所提出的纳米天线的检测特性;单元件检测到峰值百分比电压升高 28%,而阵列检测到中心波长处的峰值百分比电压升高 80%。与最先进的热电设计相比,这是首次根据基于塞贝克原理的平面设计实验报告如此高的峰值百分比电压。
1。Yagi A,Ueda Y,Nakagawa S,Ikeda S,Kakuda M,Hiramatsu K等。可以接收疫苗接种
摘要 - 本文介绍了针对低损坏互连的高带宽天线(AIP)模块的设计和演示,这些模块和Yagi-uda天线性能是在100 m m低系数的28-GHZ带的28-GHZ带上制造的100 µm低系数(CTE)玻璃。它显示了关键技术构建块的建模,设计和表征以及高级3D玻璃包装的过程开发。构建块包括在100- µm玻璃基板上具有背面模具组件的阻抗匹配的天线到de-die信号转变,Yagi – UDA天线和3-D主动 - 通行整体。讨论了天线集成毫米波(MM-WAVE)模块的设计和堆叠优化。还描述了在多层薄玻璃包装中实现高密度互连和精确尺寸控制的过程。关键技术构建块的表征结果显示,通过(TPV)(TPV),插入损失为0.021 dB,导致全链损失小于1 dB,回报损失低于20 dB。由于玻璃基板实现了过程控制,制造的Yagi – Uda天线具有宽带宽的高可重复性。天线测量值显示带宽为28.2%,涵盖了整个28 GHz第1级(5G)频带(N257,N258和N261)。,带有80- µm焊球的浮动芯片组装了低噪声放大器,可根据需要显示20 dB的最大增益。基于玻璃的包装集成天线的性能是针对其他5G底物技术的基准测试的,例如有机层压板或基于陶瓷的底物。
L3HARRIS RF-3082-AT001下一代交叉的Yagi卫星天线提供完整的双链MUOS和Legacy UHF SATCOM。为快速部署和高增益辐射模式而设计,天线覆盖了240至380 MHz频率范围。它可以折叠起来,并轻松适合轻巧的小体积随身携带袋。
主席 Toshiharu Saiki,庆应义塾大学 成员 Takashi Harumoto,东京科学研究所 Muneaki Hase,筑波大学 Masashi Kuwahara,国家先进工业科学和技术研究所 Yuta Saito,东北大学 Toshimichi Shintani,国家先进工业科学和技术研究所 Yuji Sutou,东北大学 Hiroshi Tanimura,东北大学 Takashi Yagi,国家先进工业科学和技术研究所 Keiichiro Yusu,日本科学技术振兴机构
对医疗保健服务提供和设施的影响•在马达加斯加,马拉维和莫桑比克摧毁或洪水的300多个医疗机构在飓风弗雷迪•巴基斯坦10%的医疗机构中有10%的医疗机构在2022年洪水期间损坏或破坏了。•11个结核病实验室,社区诊所和医疗机构淹没了,导致最近2024年孟加拉国洪水严重破坏卫生服务。•今年肯尼亚洪水受到了63次卫生设施的影响。•越南的超级台风Yagi损害了550多个医疗机构。•尼泊尔的洪水损害了62个医疗机构(三级医院和健康职位)
Yutaka Yagi 关于帝人集团 帝人 (TSE: 3401) 是一家技术驱动的全球性集团,拥有两大核心业务:高性能材料和医疗保健解决方案。帝人成立于 1918 年,是日本第一家人造丝制造商,目前在 20 个国家/地区拥有约 170 家公司,拥有 20,000 名员工。帝人致力于实现其宗旨,“共同开拓解决方案,打造健康地球”。帝人与员工和外部合作伙伴共同努力,实现其长期愿景,“成为一家支持未来社会的公司”。截至 2024 年 3 月 31 日的财年,帝人的综合销售额为 1,0328 亿日元(66 亿美元),总资产为 1,2510 亿日元(80 亿美元)。新闻联系人 企业传播部 帝人有限公司 pr@teijin.co.jp
第 2 章介绍了天线。本章解释了各向同性和定向辐射元件的原理,并介绍了许多重要概念,包括辐射电阻、天线阻抗、辐射功率、增益和效率。介绍了几种实用的天线形式,包括偶极子、八木波束天线、四分之一波(马可尼)天线、角反射器、波姆和抛物面天线。第 2 章还介绍了馈线(包括同轴电缆和明线类型)、连接器和驻波比 (SWR)。本章最后简要介绍了波导系统。第 3 章的主题是无线电发射机和接收机。本章向读者介绍了 AM 和 FM 发射机以及调谐射频 (TRF) 和超音速外差 (superhet) 接收机的工作原理。选择性、镜像信道抑制和自动增益控制 (AGC) 是现代无线电接收机的重要要求,在继续描述更复杂的接收设备之前,将介绍这些主题。现代飞机无线电设备越来越多地基于数字频率合成的使用,并且描述和解释了锁相环和数字合成器的基本原理。
第 2 章介绍了天线。本章解释了各向同性和定向辐射元件的原理,并介绍了许多重要概念,包括辐射电阻、天线阻抗、辐射功率、增益和效率。介绍了几种实用的天线形式,包括偶极子、八木波束天线、四分之一波(马可尼)天线、角反射器、波姆和抛物面天线。第 2 章还介绍了馈线(包括同轴电缆和明线类型)、连接器和驻波比 (SWR)。本章最后简要介绍了波导系统。无线电发射机和接收机是第 3 章的主题。本章向读者介绍了 AM 和 FM 发射机以及调谐射频 (TRF) 和超音速外差 (superhet) 接收机的工作原理。选择性、镜像信道抑制和自动增益控制 (AGC) 是现代无线电接收机的重要要求,在继续描述更复杂的接收设备之前,将介绍这些主题。现代飞机无线电设备越来越多地基于数字频率合成的使用,并描述和解释了锁相环和数字合成器的基本原理。
0730-1900 注册 - 全体会议休息室 0900-0935 大会欢迎词和开幕式 全体会议厅 2 0900-0935 大会欢迎词和开幕式 0935-1020 全体会议 1 - 人工智能会议室 全体会议厅 2 主席 Andy Hill 0935-1020 蛋白质语言模型正在学习做什么? Sergey Ovchinnikov,美国麻省理工学院 1020-1030 会议变更 1030-1120 并行会议 1 - 主题演讲 KS1 - 生物信息学、计算生物学和组学 - 全体会议厅 2 主席 Bernie Pope 和 Megan Maher 1030-1100 主题演讲人 PI3K α 膜结合由 ras 增强且与改变的膜特性相关 Jane Allison,新西兰奥克兰大学 1100-1120 特邀演讲人将内源性分子转化为药物的综合方法 Peter Bond,新加坡生物信息学研究所 (A*STAR) KS2 - 疾病的分子基础 - 210 房间 主席 Justine Mintern 和 Jerome Le Nours 1030-1100 主题演讲人 Gpr43 介导的哮喘嗜酸性粒细胞调节 You-Me Kim,韩国科学技术高级研究所,韩国FAOBMB Kunio Yagi 讲座 1100-1120 特邀发言人 化脓性链球菌咽炎引发针对人类主要毒力因子的全身和粘膜免疫反应 Danika Hill,澳大利亚莫纳什大学