由于与人类生物学相似性高,非人类灵长类动物 (NHP) 模型对于开发基于诱导性多能干细胞 (iPSC) 的细胞和再生器官移植疗法非常有用。然而,关于 NHP-iPSC(尤其是恒河猴 iPSC)的建立、分化和遗传改造的知识有限。我们通过结合 Yamanaka 重编程因子和两种抑制剂(GSK-3 抑制剂 [CHIR 99021] 和 MEK1/2 抑制剂 [PD0325901]),成功地从恒河猴外周血 (Rh-iPSC) 中建立了 iPSC,并通过造血祖细胞将这些细胞分化为功能性巨噬细胞。为了证实 Rh-iPSC 衍生的巨噬细胞作为疾病模型生物测定平台的可行性,我们通过 CRISPR-Cas9 敲除了 Rh-iPSC 中的 TRIM5 基因,这是一种物种特异性 HIV 抗性因子。TRIM5 敲除 (KO) iPSC 具有与 Rh-iPSC 相同的巨噬细胞分化潜能,但分化后的巨噬细胞在体外对 HIV 感染的敏感性有所增加。我们用于获得 Rh-iPSC 衍生的巨噬细胞的重编程、基因编辑和分化方案可应用于其他基因突变,从而扩大 NHP 基因治疗模型的数量。
9) K. Mitsukura、M. Toba、K. Urashima、Y. Ejiri、K. Iwashita、T. Minegishi、K. Kurafuchi,“用于有机中介层的超精细和高可靠性沟槽布线工艺提案。”国际微电子组装与封装协会 (IMAPS) 2016。10) K. Mitsukura、S. Abe、M. Toba、T. Minegishi、K. Kurafuchi,“使用新设计的绝缘阻挡膜实现 1/1 μm 线/间距的高可靠性 Cu 布线层。”国际微电子组装与封装协会 (IMAPS) 2017。11) M. Minami、D. Yamanaka、M. Toba、S.H.Tsai, S. Katoh, K. Mitsukura,“制造具有精细 Cu 布线和出色电气可靠性的两种面板级中介层” 2023 年电子元件和技术会议 (ECTC)。12) S.H.Jin, W.C. Do, J.S.Jeong, H.G.Cha, Y.K.Jeong, J.Y.Khim,“具有细间距嵌入式走线 RDL 的 S-SWIFT” 2022 年电子元件和技术会议 (ECTC)。13) AH 系列 | 产品 | Resonac
人为时代的生物多样性损失危机需要研究非模型生物的新工具。大象既是一种濒危物种,又是研究复杂表型(例如大小,社会行为和寿命)等复杂表型的出色模型,但它们仍然严重研究。在这里,我们报告了通过化学媒体诱导和菌落选择的两个步骤,然后对大象转录因子Oct4,Sox2,Sox2,sox2,klf4,myc±nanog and Lin28a和MADENATION进行过度表达,然后通过化学媒体诱导和菌落选择过度表达了大象诱导的多能干细胞(EMIPSC)的第一个推导。自Shinya Yamanaka进行重新编程以来,已经报道了来自许多物种在内的许多物种的IPSC,包括功能灭绝的北部白鼻菌,但EMIPSC仍然难以捉摸。对于多种物种,与小鼠和人类(如小鼠和人类)相比,采用了重编程方案,但我们的EMIPSC方案几乎没有变化,但我们的EMIPSC方案需要更长的时间表和抑制TP53扩张基因,这些基因被认为可以在大象中赋予独特的癌症。IPSC解锁了探索细胞命运,细胞和组织发育,细胞疗法,药物筛查,疾病建模,癌症发展,配子发生及其他方面的巨大潜力,以进一步了解我们对这一标志性的巨型巨型。这项研究为遗传拯救和保护的晚期非模型生物细胞模型打开了新的边界。
诱导的多能干细胞(IPSC)源自使用四个Yamanaka转录因子对成年体细胞的重编程。自发现以来,干细胞(SC)领域就达到了重要的里程碑,并在疾病建模,药物发现和再生医学领域开设了多个门户。同时,聚类的定期插入短的短质体重复序列(CRISPR) - 相关蛋白9(CRISPR-CAS9)彻底改变了基因组工程的范围,从而允许产生遗传上修改的细胞系,并实现精确的基因组重组或随机插入/插入/删除的应用程序,用于使用WIREDIRESS,WIREDIRESS。心血管疾病代表着不断增加的社会问题,对潜在的细胞和分子机制的了解有限。IPSC分化为多种细胞类型与CRISPR-CAS9技术相结合的能力可以实现对潜在疗法的病理生理机制或药物筛查的系统研究。此外,这些技术可以通过调节靶向蛋白的表达或抑制来提供心血管组织工程(TE)方法的细胞平台,从而为设计新的细胞系和/或精细仿生生物仿生支架提供了可能性。本综述将重点介绍IPSC,CRISPR-CAS9的应用以及其在心血管TE领域的结合。特别是,将讨论此类技术的临床转换性,从疾病建模到药物筛查和TE应用。
人为时代的生物多样性损失危机需要研究非模型生物的新工具。大象既是一种濒危物种,又是研究复杂表型(例如大小,社会行为和寿命)等复杂表型的出色模型,但它们仍然严重研究。在这里,我们报告了通过化学媒体诱导和菌落选择的两个步骤,然后对大象转录因子Oct4,Sox2,Sox2,sox2,klf4,myc±nanog and Lin28a和MADENATION进行过度表达,然后通过化学媒体诱导和菌落选择过度表达了大象诱导的多能干细胞(EMIPSC)的第一个推导。自Shinya Yamanaka进行重新编程以来,已经报道了来自许多物种在内的许多物种的IPSC,包括功能灭绝的北部白鼻菌,但EMIPSC仍然难以捉摸。对于多种物种,与小鼠和人类(如小鼠和人类)相比,采用了重编程方案,但我们的EMIPSC方案几乎没有变化,但我们的EMIPSC方案需要更长的时间表和抑制TP53扩张基因,这些基因被认为可以在大象中赋予独特的癌症。IPSC解锁了探索细胞命运,细胞和组织发育,细胞疗法,药物筛查,疾病建模,癌症发展,配子发生及其他方面的巨大潜力,以进一步了解我们对这一标志性的巨型巨型。这项研究为遗传拯救和保护的晚期非模型生物细胞模型打开了新的边界。
人为时代的生物多样性损失危机需要研究非模型生物的新工具。大象既是一种濒危物种,又是研究复杂表型(例如大小,社会行为和寿命)等复杂表型的出色模型,但它们仍然严重研究。在这里,我们报告了通过化学媒体诱导和菌落选择的两个步骤,然后对大象转录因子Oct4,Sox2,Sox2,sox2,klf4,myc±nanog and Lin28a和MADENATION进行过度表达,然后通过化学媒体诱导和菌落选择过度表达了大象诱导的多能干细胞(EMIPSC)的第一个推导。自Shinya Yamanaka进行重新编程以来,已经报道了来自许多物种在内的许多物种的IPSC,包括功能灭绝的北部白鼻菌,但EMIPSC仍然难以捉摸。对于多种物种,与小鼠和人类(如小鼠和人类)相比,采用了重编程方案,但我们的EMIPSC方案几乎没有变化,但我们的EMIPSC方案需要更长的时间表和抑制TP53扩张基因,这些基因被认为可以在大象中赋予独特的癌症。IPSC解锁了探索细胞命运,细胞和组织发育,细胞疗法,药物筛查,疾病建模,癌症发展,配子发生及其他方面的巨大潜力,以进一步了解我们对这一标志性的巨型巨型。这项研究为遗传拯救和保护的晚期非模型生物细胞模型打开了新的边界。
多年来积累的有关细胞分化机制的数据推动了细胞重编程的发展——这是生物技术的一个全新策略。将体细胞恢复到多能状态甚至将一种体细胞类型直接转换为另一种体细胞类型(转分化)的能力已成为细胞生物学的一项重要突破,因为它广泛应用于从基础研究到再生医学和遗传疾病治疗。早期的重编程技术,如体细胞核移植 (SCNT) 和细胞融合,大约 60 年前首次实施,证实了体细胞的分化状态是可以逆转的(Briggs 和 King,1952 年;Köhler 和 Milstein,1975 年)。尽管这些技术适用于多种应用(Köhler 和 Milstein,1975 年;Lee 等人,2016 年),但对于大多数现代重编程目的而言,它们仍然过于随机和不可控。重编程的下一个级别是在体细胞中外源性过度表达转录因子 (TF)。Takahashi 和 Yamanaka (2006) 在他们著名的将体细胞重编程为诱导多能干细胞 (iPSC) 的实验中使用了这种方法。TF 的过度表达仍然是改变细胞命运的最常见和最有效的方法。如今,存在多种技术可以实现这种改变。其中之一可能是 CRISPR/Cas9 — 一种基于细菌抗病毒防御系统的基因工程工具(Hsu 等人,2014 年)。该系统经过多次修改,不仅允许 DNA 编辑,还可以通过激活、抑制甚至染色质重塑等不同方式调节基因表达。
里德·布莱克莫尔(大西洋理事会);罗伯托·博卡(世界经济论坛);丽娜·博勒·泽勒(维斯塔斯); Laura Casuscelli(欧洲风能);萨姆·考尼什(IIGCC); Leandro de Oliveira Albuquerque(巴西矿业和能源部);丽贝卡·戴尔(ClimateWorks 基金会); Miriam D'Onofrio 和 Sarah Ladislaw(美国国家安全委员会); Daniel Dufour(加拿大自然资源部);安德烈·埃克曼(GIZ);马丁·福森(NIBE); Marie-Laetitia Gourdin 和 Christin Töpfer(Vattenfall); Rishabh Jain 和 Dhruv 战士 (CEEW); Leif Christian Kröger(蒂森克虏伯 nucera); Thomas Kwan 和 Silvia Madeddu(施耐德电气); Jon Lezamiz Cortazar(西门子歌美飒);林晓(Botree Recycling Technologies);约翰·林达尔(ESMC); Michael Lippert(SAFT);Joseph Majkut(CSIS);Monika Merdekawat(东盟能源中心);Yasuko Nishimura 和 Atsushi Taketani(日本外交部);Thomas Nowak(欧洲热泵协会);Jared Ottmann(特斯拉);Gaurav Pundir(印度商务部);Marta Ramos Fernandez(空中客车);David Reiner(剑桥大学);Mark Richards(力拓集团);Agustín Rodríguez Riccio(托普索公司);Javier Sanz(Innoenergy);Oliver Sartor(Agora);Christian Schmidt(德国总理府);Ulrik Stridbæk(Ørsted);Jacopo Tattini(欧盟委员会);Peter Taylor(利兹大学);Denis Thomas(康明斯);Fridtjof Unander(Aker Horizons);Noé van Hulst(IPHE); Anne van Ysendyck(安赛乐米塔尔);David Victor(加州大学圣地亚哥分校);Natasha Vidangos(环境保护基金);Miki Yamanaka(大金工业)。
与正常组织中的干细胞一样,癌症干细胞 (CSC) 是肿瘤组织中具有“类干细胞”特征的小细胞群。CSC 具有自我更新和分化为异质性肿瘤细胞的能力,这些肿瘤细胞负责肿瘤的维持和增殖(Batlle and Clevers,2017)。CD34 + /CD138 − 细胞能够在急性髓系白血病中引发肿瘤是 CSC 的第一个确凿证据(Bonnet and Dick,1997)。基于这一突破,随后在多种造血系统癌症和实体瘤中发现了 CSC。肝细胞癌占原发性肝癌发病率的大多数,并且已经通过在 HCC 中鉴定出几种表面标志物证明了 CSC 的存在(Machida,2017)。大量研究表明CSC为HCC提供了增殖、侵袭和复发优势。即便如此,CSC在HCC中的存在仍然存在争议,这在CSC起源理论中尤其明显(见图1)。一些研究表明CSC来源于肝祖细胞(LPC),巨噬细胞分泌的TNF-α在炎症诱导下将LPC转变为CSC为该理论提供了有力证据(LiXF等,2017)。其他研究表明CSC来源于成熟细胞和胆管细胞在遗传和/或表观遗传变化的影响下去分化(Nio等,2017)。更有趣的是,通过多能性诱导物(如 Nanog、Oct4、Yamanaka 因子和 Sox2)重编程产生 CSC 的说法也被广泛接受( Yamashita and Wang,2013 ),也有研究声称 CSC 来源于骨髓干细胞( Kim et al.,2010 )。面对 CSC 来源的争议,研究者尝试利用体外培养和免疫缺陷肿瘤模型探索 CSC 的来源,例如来源于体外培养的球形细胞和来源于癌细胞与干细胞的融合细胞均被认为是 CSC( Wang R. et al.,2016 )。但体外诱导的 CSC 是否与体内肿瘤中的 CSC 一致仍存在疑问( Magee et al.,2012 )。一方面,
摘要 GaN 技术不仅在功率和射频电子领域获得广泛关注,而且还迅速扩展到其他应用领域,包括数字和量子计算电子。本文概述了未来的 GaN 器件技术和先进的建模方法,这些技术和方法可以在性能和可靠性方面突破这些应用的界限。虽然 GaN 功率器件最近已在 15-900 V 级实现商业化,但新的 GaN 器件对于探索高压和超低压功率应用非常有吸引力。在 RF 领域,超高频 GaN 器件正用于实现数字化功率放大器电路,并且可以预期使用硬件-软件协同设计方法将取得进一步的进展。GaN CMOS 技术即将问世,这是实现集成数字、功率和 RF 电子技术的全 GaN 平台的关键缺失部分。尽管目前是一个挑战,但高性能 p 型 GaN 技术对于实现高性能 GaN CMOS 电路至关重要。由于其出色的传输特性和通过极化掺杂产生自由载流子的能力,GaN 有望成为超低温和量子计算电子学的重要技术。最后,鉴于新设备和电路的硬件原型设计成本不断增加,使用高保真设备模型和数据驱动的建模方法进行技术电路协同设计预计将成为未来的趋势。在这方面,物理启发、数学稳健、计算负担较少和预测性的建模方法是必不可少的。凭借所有这些以及未来的努力,我们预计 GaN 将成为电子产品的下一个 Si。
