生物学功能是相互作用的遗传因素的复杂净作品或胸部的胸部。预测相互作用的景观仍然是系统生物学的挑战和新的研究工具,允许模拟和快速映射序列的功能。在这里,我们描述了CRI-SPA,这是一种从CRI-SPA供体菌株转移到酿酒酵母大型库中的阵列菌株的方法。Cri-Spa基于交配,CRI SPR-CAS9诱导的基因转化率和S peleptive poiidy a Blation。CRI-SPA可以与自动化大规模平行,并且可以在一周内执行。我们通过将四个基因转移到酵母敲除收集的每个菌株中(≈4800菌株)来证明CRI-SPA的功能。使用此设置,我们表明CRI-SPA具有高度有效且可重复的,并且遗传特征的无标记转移。此外,我们通过表明它们的表型与Re ver se遗传性工程重现的相应突变菌株的表型相结合来验证一组CRI-SPA命中。因此,我们的结果概述了Betaxanthin生产的遗传要求的全基因组概述。我们设想,CRI-SPA提供的简单性,速度和可靠性将使它成为对生物过程的系统级别理解的verile工具。
摘要 通过等位基因置换进行基因定点突变是功能基因组分析和代谢工程的重要内容,但传统的通过选择标记对必需基因进行定点突变的方法存在很大挑战,因为第一步必需基因敲除将导致致死的表型。本文利用CRISPR/Cas9系统,发展了一种两端选择标记(Two-ESM)方法对酿酒酵母中的必需基因进行定点突变,成功构建了酿酒酵母必需基因ERG20(编码法呢基二磷酸合酶)的单突变和双突变体,突变效率达100%。此外,与传统方法相比,Two-ESM方法显著提高了突变效率,简化了遗传操作程序。通过动态调控突变基因的表达和整合模块的优化,进一步提高了基因组整合和突变效率。这种 Two-ESM 方法将有助于构建酵母功能基因组分析和代谢通量调控所需的必需基因的基因组突变。
康普茶是利用 SCOBY(细菌和酵母的共生培养)将茶与糖溶液一起发酵制成的。康普茶发酵分为几个阶段,例如将糖转化为乙醇、将乙醇转化为乙酸以及将乙酸转化为二氧化碳。因此,康普茶发酵过程中必须涉及几种独特的微生物。我们之前的研究报告称,康普茶饮料(液相)中的可培养微生物都是细菌。此外,在本研究中,我们研究了 SCOBY 本身中的可培养微生物。在康普茶发酵过程中,每天使用无菌刀切割 SCOBY 片(约 1×1 厘米)。将 SCOBY 切片在马铃薯葡萄糖肉汤中富集,并在 37°C 下培养 24 小时。将富集的培养物接种到平板计数琼脂中,并在 37°C 下培养 24 小时。在 14 天的康普茶发酵过程中收集了四个不同的菌落,分别命名为分离物 (a)、(b)、(c)、(d)。疑似细菌菌落培养在营养琼脂中,而疑似霉菌或酵母菌落培养在马铃薯葡萄糖琼脂中。表征结果表明,分离物 (a) 具有与醋杆菌属相近的特征(革兰氏阴性、短杆状、不产生内生孢子),而分离物 (b) 为革兰氏阴性、长杆状并产生内生孢子。分离物 (c) 被怀疑为霉菌,分离物 (d) 被鉴定为酵母。关键词:细菌;发酵;康普茶;SCOBY;酵母
摘要 蛋白质是细胞中的关键分子,其丰度不仅在基因表达水平而且在转录后水平受到广泛调控。在这里,我们描述了一种酵母基因筛选方法,该方法能够系统地表征蛋白质丰度调控在基因组中的编码方式。该筛选方法结合了 CRISPR/Cas9 碱基编辑器来引入点突变,并对内源性蛋白质进行荧光标记以方便流式细胞仪读数。我们首先使用单个 gRNA 以及正向和负向选择筛选对酵母中的碱基编辑器性能进行了基准测试。然后,我们研究了 16,452 种基因扰动对代表各种细胞功能的 11 种蛋白质丰度的影响。我们发现了数百种调控关系,包括 GAPDH 同工酶 Tdh1/2/3 与 Ras/PKA 通路之间的新联系。许多已识别的调节因子特定于这 11 种蛋白质中的一种,但我们还发现了一些基因,这些基因在受到扰动时会影响大多数测试蛋白质的丰度。虽然更具体的调控因子通常作用于转录,但广泛的调控因子往往在蛋白质翻译中发挥作用。总的来说,我们的新筛选方法为蛋白质调控网络的组成部分、规模和连通性提供了前所未有的见解。
该项目的共同负责人、澳大利亚研究理事会合成生物学卓越中心主任、杰出教授伊恩·保尔森 (Ian Paulsen) 表示:“通过成功构建和调试最终的合成染色体,我们帮助完成了一个强大的工程生物学平台,这可能会彻底改变我们生产药品、可持续材料和其他重要资源的方式。”
基因组差异如何促进表型差异是生物学的主要问题。最近在酵母菌saccharomycotina中,来自1,049种真菌物种(几乎所有已知)的122个来源和条件的新生长基因组,隔离环境和定性模式提供了一个强大的,复杂但复杂的数据集来解决此问题。我们使用了对这些基因组,代谢和环境数据训练的随机森林算法,以高精度预测几种碳源的增长。已知的结构基因涉及这些来源的收集和其他来源中生长的存在/不存在模式是有助于预测准确性的重要特征。通过进一步检查半乳糖的生长,我们发现它可以从基因组(92.2%)或生长数据(82.6%)(82.6%)的准确度中进行预测,但不能从隔离环境数据(65.6%)中进行预测。预测准确性甚至更高(93.3%)。在GAL ACTOSE利用基因之后,预测半乳糖生长的最重要特征是半乳酸上的生长,提出了一个假设,即在两个阶,血清中心和皮基亚菌中的几种物种(分别包含Auris的新兴病原体念珠菌和ogataea属)缺少了GALACTOWAY的替代途径,因为它们缺乏GALACE GENES。生长和生化分析证实,这些物种的数量通过替代氧化剂D-半乳糖途径利用半乳糖,而不是规范的GAL途径。机器学习方法对于研究酵母基因型 - 表型图的演变非常有力,即使在良好的研究性状中,它们的应用也会发现新颖的生物学。
分析了五种酵母菌株,以生成由人工智能 (AI) 使用卷积神经网络或线性判别分析 (LDA) 确定的识别模型。通过向软件输入每个获取细胞的每个通道的形态特征来构建模型。我们结合了两个模型:一个基于明场特征,通过对模型预测的每个菌株的身份及其实际类别进行统计分析来验证;第二个使用 LDA 算法,并添加了自发荧光测量。计算出的“超参数”允许在分析混合种群时最大限度地分离不同的菌株。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
这项研究旨在使用从Dahi(一种流行的印度发酵乳制品)中分离出的天然酵母乳酸启动联盟来开发发酵的小麦粉(FWF)。酵母菌和乳酸细菌(LAB)从当地家用达希样品中分离出来,以评估其牛奶发酵潜力。分子方法用于鉴定实验室分离株,而使用碳水化合物发酵型鉴定酵母菌株。用实验室分离乳杆菌和酵母分离型念珠菌球形乳杆菌制备达希样品,它们的组合显示出优质的感觉得分。使用实验室,酵母及其组合制备FWF,并对基于FWF的汤进行感觉评估。与市售的小麦粉/atta相比,制备的FWF含量较低(6%),碳水化合物(71.14%)和热量值(345.4 kcal)含量。微生物分析表明,大肠菌群,大肠杆菌和金黄色葡萄球菌的不存在,表明卫生制剂并抑制了变质和致病性细菌。FWF的低水分含量和酸性pH(4.4)有助于其存储稳定性。总而言之,使用DAHI的本机实验室生产的发酵小麦粉是一种具有成本效益,储存稳定的功能性食品,具有实用有益的微生物,适合促进肠道健康。
多年来,摘要5-氨基乙烯酸(5- ALA)的生物产生受到了人们的关注。但是,由于产生5 -ALA,发酵汤将变得酸性,因此在5 -ALA生物合成和细胞生长之间存在权衡。为了解决这一限制,我们设计了一种耐酸的酵母,即Issatchenkia Orientalis sd108,以进行5 -ALA生产。我们首先发现I. Orientalis SD108的细胞生长速率被5 -ALA增强,其内源性ALA合成酶(ALA)的活性高于其他酵母中的同源物。通过优化质粒设计,过表达转运蛋白和增加基因拷贝数,将5- ALA的滴度从28 mg/L到120-,150-和300 mg/L的提高。使用丙酮酸脱羧酶(PDC)敲除菌株(SD108δPDC)并用尿素进行培养后,我们将510 mg/l的滴度提高到510 mg/l,13-折叠率增强性,证明了与新的IOIALAL活动的重要性,我们将510 mg/l的滴度提高到510 mg/l,这是13-倍数增强。这项研究证明了耐酸I. OrientalisSD108ΔPDC在将来大规模的5- ALA产生的潜力很高。