计算机科学家 Yejin Choi 在此揭开 ChatGPT 等大型人工智能系统的现状,强调尖端大型语言模型的三个关键问题(包括一些在基本常识推理方面失败的有趣例子)。她欢迎我们进入一个新时代,在这个时代,人工智能几乎就像一个新的智力物种——并指出了构建根据人类规范和价值观进行训练的小型人工智能系统的好处。(随后是与 TED 负责人 Chris Anderson 的问答)'• Johnson, D.、Goodman, R.、Patrinely, J.、Stone, C.、Zimmerman, E.、Donald, R.,...... & Wheless, L. (2023)。评估人工智能生成的医疗反应的准确性和可靠性:对 Chat-GPT 模型的评估
A. Feder Cooper *, Christopher A. Choquette-Choo*, Miranda Bogen*, Matthew Jagielski*, Katja Filippova*, Ken Ziyu Liu*, Alexandra Chouldechova, Jamie Hayes, Yangsibo Huang, Niloofar Mireshghallah, Ilia Shu- mailov, Eleni Triantafillou, Peter Kairouz, Nicole Mitchell, Percy Liang, Daniel E. Ho, Yejin Choi, Sanmi Koyejo, Fernando Delgado, James Grimmelmann, Vitaly Shmatikov, Christopher De Sa, Solon Barocas, Amy Cyphert, Mark Lemley, danah boyd, Jennifer Wortman Vaughan, Miles Brundage, David Bau, Seth Neel, Abigail Z. Jacobs,Andreas Terzis,Hanna Wallach,Nicolas Papernot和Katherine Lee。“机器的学习不做您的想法:生成AI政策,研究和实践的课程。” 2024。[链接]
*Terence赢得了NUS杰出的本科研究人员奖AY2019 / 2020实习生 /夏季学生Joseph Kwon(耶鲁大学本科生,2020年6月,2020年8月;现在是MIT的实验室经理)Ng Hui Xin(Vassar校友,2019年1月 - 2019年1月 - 2019年8月2019年8月 - 2019年8月 - 2019年8月 - 2019年8月)。 Shanana Meeimer(UT心理学)YUS信息分析。
WEO 团队的主要贡献者包括:Lucila Arboleya Sarazola(投资和金融)、Yasmine Arsalane(经济展望、电力负责人)、Blandine Barreau(恢复计划分析)、Simon Bennett(氢能、能源技术负责人)、Daniel Crow(行为分析、空气污染负责人)、Davide D'Ambrosio(数据科学、电力负责人)、Amrita Dasgupta(氢能、关键矿物)、Tanguy de Bienassis(投资和金融)、Tomás de Oliveira Bredariol(甲烷)、Musa Erdogan(化石燃料补贴、数据管理)、Eric Fabozzi(电力和电网)、Víctor García Tapia(数据科学、建筑)、Victor Gautier(工业)、Pablo Gonzalez(投资和金融)、Timothy Goodson(终端需求分析联合负责人)、Shai Hassid(电力)、Paul Hugues(工业负责人)、Inchan Hwang(投资和金融)、 Bruno Idini(交通运输)、George Kamiya(能源技术、数字化)、Tae-Yoon Kim(燃料供应分析和能源安全联合负责人)、Vanessa Koh(电力和电网)、Martin Kueppers(工业、非洲)、Lilly Yejin Lee(交通运输)、Laura Maiolo(石油和天然气供应)、Ariane Millot(建筑、气候和环境)、Toru Muta(燃料供应)、Lucas Pereira(需求侧响应)、Apostolos Petropoulos(交通运输负责人)、Mariachiara Polisena(电力)、Ryszard Pospiech(供应建模和数据管理)、Arnaud Rouget(能源获取和非洲)、Jasmine Samantar(能源获取和非洲)、Rebecca Schulz(石油和天然气
1。背包语言模型。在计算语言学协会年会(ACL)年会2023年。接受率:23.5%未偿还纸张奖:39 /3872纸提交。约翰·休伊特(John Hewitt),约翰·加斯敦(John Glongstun),克里斯托弗·D·曼宁(Christopher D. Manning),珀西·梁(Percy Liang)。2。通过生成预训练的旋律转录。在国际音乐信息检索研讨会(ISMIR)2022中。接受率:43.3%的克里斯·多纳休(Chris Donahue),约翰·加斯敦(John Glongstun),珀西·梁(Percy Liang)。3。扩散lm改善可控文本生成。神经信息处理系统的进步(神经)2022。接受率:25.6%的口头呈递。Xiang Lisa Li,John Glongstun,Ishaan Gulrajani,Percy Liang,Tatsunori B. Hashimoto。 4。 淡紫色:使用发散边界来测量神经文本和人类文本之间的差距。 神经信息处理系统的进步(神经)2021。 接受率:25.7%未偿还纸张奖:6 /9122纸质提交。 奎师那·普鲁图拉(Krishna Pillutla),斯瓦巴(Swabha Swayamdipta),罗文·泽勒斯(Rowan Zellers),约翰·盖斯坦(John Gondstun),肖恩·威尔克(Sean Welleck),Yejin Choi,Zaid Harchaoui。 5。 通过Langevin Dynamics从自回旋模型进行平行和灵活的采样。 在机器学习国际会议(ICML)2021中。 接受率:21.5%Vivek Jayaram*,John Glongstun*(*同等贡献)。 6。 使用连续时间梯度更快地学习。 动态与控制学习(L4DC)2021。 7。 8。 9。 10。Xiang Lisa Li,John Glongstun,Ishaan Gulrajani,Percy Liang,Tatsunori B. Hashimoto。4。淡紫色:使用发散边界来测量神经文本和人类文本之间的差距。神经信息处理系统的进步(神经)2021。接受率:25.7%未偿还纸张奖:6 /9122纸质提交。奎师那·普鲁图拉(Krishna Pillutla),斯瓦巴(Swabha Swayamdipta),罗文·泽勒斯(Rowan Zellers),约翰·盖斯坦(John Gondstun),肖恩·威尔克(Sean Welleck),Yejin Choi,Zaid Harchaoui。5。通过Langevin Dynamics从自回旋模型进行平行和灵活的采样。在机器学习国际会议(ICML)2021中。接受率:21.5%Vivek Jayaram*,John Glongstun*(*同等贡献)。6。使用连续时间梯度更快地学习。动态与控制学习(L4DC)2021。7。8。9。10。塞缪尔·阿恩斯沃思(Samuel Ainsworth),肯德尔·洛里(Kendall Lowrey),约翰·康斯敦(John Glongstun),扎伊德·哈科伊(Zaid Harchaoui),悉达多·斯里尼瓦萨(Siddhartha Srinivasa)。一种信息瓶颈方法,用于控制理由提取中的简洁性。自然语言处理中的经验方法(EMNLP)2020。接受率:24.5%Bhargavi Paranjape,Mandar Joshi,John Glongstun,Hannaneh Hajishirzi,Luke Zettlemoyer。用深的生成先验的源分离。在国际机器学习会议(ICML)2020中。接受率:21.8%Vivek Jayaram*,John Glongstun*(*同等贡献)。卷积作曲家分类。在国际音乐信息检索研讨会(ISMIR)2019中。接受率:45.1%苛刻的Verma,John Glongstun。耦合复发模型,用于复音音乐组成。在国际音乐信息检索研讨会(ISMIR)2019中。接受率:45.1%John Glongstun,Zaid Harchaoui,Dean P. Foster,Sham M. Kakade。11。监督音乐转录的不断增长和数据增强。在国际声学,言语和信号处理(ICASSP)2018中。接受率:49.7%的口头介绍。John Gongstun,Zaid Harchaoui,Dean P. Foster,Sham M. Kakade。12。用于多个F0估计的频域卷积。Mirex摘要(技术报告)2017。John Gongstun,Zaid Harchaoui,Dean P. Foster,Sham M. Kakade。13。音乐网:从头开始学习音乐的功能。在2017年国际学习表征会议(ICLR)。接受率:39.1%John Glongstun,Zaid Harchaoui,Sham M. Kakade。
Key contributions from across the WEO team were from: Lucila Arboleya Sarazola (investment and finance), Yasmine Arsalane (lead economic outlook, power), Blandine Barreau (recovery plan analysis), Simon Bennett (lead hydrogen, energy technologies), Daniel Crow (lead behaviour analysis, air pollution), Davide D'Ambrosio (lead on data science, power), Amrita Dasgupta (hydrogen, critical minerals), Tanguy de Bienassis (investment and finance), Tomás de Oliveira Bredariol (methane), Musa Erdogan (fossil fuel subsidies, data management), Eric Fabozzi (power and electricity networks), Víctor García Tapia (data science, buildings), Victor Gautier (industry), Pablo Gonzalez (investment and finance), Timothy Goodson (co-lead on end-use demand analysis), Shai Hassid (power), Paul Hugues (lead on industry), Inchan Hwang (investment and finance), Bruno Idini (transport), George Kamiya (energy technologies, digitalisation), Tae-Yoon Kim (co-lead on fuel supply analysis and energy security), Vanessa Koh (power and electricity networks), Martin Kueppers (industry, Africa), Lilly Yejin Lee (transport), Laura Maiolo (oil and gas supply), Ariane Millot (buildings, climate and environment), Toru Muta (fuel supply), Lucas Pereira (demand-side response), Apostolos Petropoulos (lead on transport), Mariachiara Polisena (power), Ryszard Pospiech (supply modelling and data management), Arnaud Rouget (energy Access and Africa),Jasmine Samantar(能源通道和非洲),Rebecca Schulz(石油和天然气供应),Leonie Staas(行业,行为),Gianluca Tonolo(能源通道的负责人),Daniel Wetzel(雇用领先),Peter Zeniewski(Peter Zeniewski(peter Zeniewski)(在能源安全上掌握了汽油的领导)。Teresa Coon,Marina Dos Santos和Eleni Tsoukala提供了基本的支持。其他贡献来自Olivia Chen,ChloéDelpierre,Michael Drtil,Frank Gentile,JérômeHilaire,Hyeji Kim,Katharina Lobo,Lia Newman和Sebastian Papapanagiotou。
WEO 团队的主要贡献者包括:Lucila Arboleya Sarazola(投资和金融)、Yasmine Arsalane(经济展望、电力负责人)、Blandine Barreau(恢复计划分析)、Simon Bennett(氢能、能源技术负责人)、Daniel Crow(行为分析、空气污染负责人)、Davide D'Ambrosio(数据科学、电力负责人)、Amrita Dasgupta(氢能、关键矿物)、Tanguy de Bienassis(投资和金融)、Tomás de Oliveira Bredariol(甲烷)、Musa Erdogan(化石燃料补贴、数据管理)、Eric Fabozzi(电力和电网)、Víctor García Tapia(数据科学、建筑)、Victor Gautier(工业)、Pablo Gonzalez(投资和金融)、Timothy Goodson(终端需求分析联合负责人)、Shai Hassid(电力)、Paul Hugues(工业负责人)、Inchan Hwang(投资和金融)、Bruno Idini(交通)、George Kamiya(能源技术、数字化)、Tae-Yoon Kim(燃料供应分析和能源安全联合负责人)、Vanessa Koh(电力和电网)、Martin Kueppers(工业、非洲)、Lilly Yejin Lee(交通)、Laura Maiolo(石油和天然气供应)、Ariane Millot(建筑、气候和环境)、Toru Muta(燃料供应)、Lucas Pereira(需求侧响应)、Apostolos Petropoulos(交通负责人)、Mariachiara Polisena(电力)、Ryszard Pospiech(供应建模和数据管理)、Arnaud Rouget(能源获取和非洲)、Jasmine Samantar(能源获取和非洲)、Rebecca Schulz(石油和天然气供应)、Leonie Staas(工业、行为)、Gianluca Tonolo(能源获取负责人)、Daniel Wetzel(就业负责人)、Peter Zeniewski(天然气负责人、能源安全联合负责人)。其他贡献者包括 Olivia Chen、Chloé Delpierre、Michael Drtil、Frank Gentile、Jérôme Hilaire、Hyeji Kim、Katharina Lobo、Lia Newman 和 Sebastian Papapanagiotou。 Teresa Coon、Marina Dos Santos 和 Eleni Tsoukala 提供了必要的支持。
整个WEO团队的主要贡献来自:Lucila Arboleya Sarazola(投资和金融),Yasmine Arsalane,Yasmine Arsalane(主要经济前景,Power),Blandine Barreau(恢复计划分析),Simon Bennett(Simon Bennett(Lead Hydrogen,Engital,Energy) (hydrogen, critical minerals), Tanguy de Bienassis (investment and finance), Tomás de Oliveira Bredariol (methane), Musa Erdogan (fossil fuel subsidies, data management), Eric Fabozzi (power and electricity networks), Víctor García Tapia (data science, buildings), Victor Gautier (industry), Pablo Gonzalez (investment and finance), Timothy Goodson (co-lead on end-use demand analysis), Shai Hassid (power), Paul Hugues (lead on industry), Inchan Hwang (investment and finance), Bruno Idini (transport), George Kamiya (energy technologies, digitalisation), Tae-Yoon Kim (co-lead on fuel supply analysis and energy security), Vanessa Koh (power and electricity networks), Martin Kueppers (industry, Africa), Lilly Yejin Lee (transport), Laura Maiolo (oil and gas supply), Ariane Millot (buildings, climate and environment), Toru Muta (fuel supply), Lucas Pereira (demand-side response), Apostolos Petropoulos (lead on transport), Mariachiara Polisena (power), Ryszard Pospiech (supply modelling and data management), Arnaud Rouget (energy Access and Africa),Jasmine Samantar(能源通道和非洲),Rebecca Schulz(石油和天然气供应),Leonie Staas(行业,行为),Gianluca Tonolo(能源通道的负责人),Daniel Wetzel(雇用领先),Peter Zeniewski(Peter Zeniewski(彼得·Zeniews)(peter Zeniewski(载有天然气的领导,能源安全的领导者)。Teresa Coon,Marina Dos Santos和Eleni Tsoukala提供了基本的支持。其他贡献来自Olivia Chen,ChloéDelpierre,Michael Drtil,Frank Gentile,JérômeHilaire,Hyeji Kim,Katharina Lobo,Lia Newman和Sebastian Papapanagiotou。
[1] Stuart Allan。2011 年。《引言:数字时代的科学新闻》。《新闻学》12,7(2011 年 10 月),771–777。https://doi.org/10.1177/1464884911412688 [2] Josh Anderson 和 Anthony Dudo。2023 年。《来自战壕的观点:与记者关于报道科学新闻的访谈》。《科学传播》(2023 年 1 月),107554702211491。https://doi.org/10.1177/10755470221149156 [3] Aviv Barnoy 和 Zvi Reich。2019 年。验证的时间、原因、方式和结果。新闻研究 20, 16 (2019 年 12 月),2312–2330。https://doi.org/10.1080/1461670X.2019.1593881 出版商:Routledge _eprint:https://doi.org/10.1080/1461670X.2019.1593881。[4] Emily Bender 和 Chirag Shah。2022 年。无所不知的机器是一种幻想。https://iai.tv/articles/all-knowing-machines-are-a-fantasy-auid-2334 [5] Emily M. Bender。2022 年。《华盛顿邮报》对 ChatGPT 的炒作。 https://medium.com/@emilymenonbender/chatgpt-hype-in-the-washington-post- c4e1355ed31b [6] Emily M. Bender。2022 年。纽约时报杂志上的 AI 文章:抵制留下深刻印象的冲动。https://medium.com/@emilymenonbender/on-nyt-magazine- on-ai-resist-the-urge-to-be-impressed-3d92fd9a0edd [7] Emily M. Bender、Timnit Gebru、Angelina McMillan-Major 和 Shmargaret Shmitchell。2021 年。论随机鹦鹉的危险:语言模型会太大吗?。在 2021 年 ACM 公平、问责和透明度会议论文集上。ACM,加拿大虚拟活动,610–623。 https://doi.org/10.1145/3442188.3445922 [8] Deborah Blum。2021 年。科学新闻事业发展。《科学》372,6540(2021 年 4 月)。https://doi.org/10.1126/science.abj0434 [9] Joshua A. Braun 和 Jessica L. Eklund。2019 年。假新闻,真钱:广告技术平台、利润驱动的骗局和新闻业务。《数字新闻》7,1(2019 年 1 月),1-21。https://doi.org/10.1080/21670811.2018.1556314 [10] J Scott Brennen、Philip N Howard 和 Rasmus Kleis Nielsen。 2018. 行业主导的辩论:英国媒体如何报道人工智能。(2018 年)。[11] Michael Brüggemann、Ines Lörcher 和 Stefanie Walter。2020. 后常态科学传播:探索科学与新闻业模糊的界限。科学传播杂志 19, 3 (2020 年 6 月)。https://doi.org/10.22323/2.19030202 [12] Madalina Busuioc。2021. 负责任的人工智能:让算法承担责任。公共管理评论 81, 5 (2021)。https://doi.org/10.1111/puar.13293 [13] Tania Cerquitelli、Daniele Quercia 和 Frank Pasquale(编辑)。2017. 大数据和小数据的透明数据挖掘。大数据研究,第 1 卷。 32. Springer International Publishing,Cham。https://doi.org/10.1007/978-3-319-54024-5 [14] Mark Deuze 和 Charlie Beckett。2022 年。想象力、算法和新闻:培养新闻业的人工智能素养。数字新闻 10,10(2022 年 11 月),1913-1918 年。https://doi.org/10.1080/21670811.2022.2119152 [15] Nicholas Diakopoulos。2015 年。算法问责制。数字新闻 3,3(2015 年 5 月)。https://doi.org/10.1080/21670811.2014.976411 [16] Nicholas Diakopoulos,Daniel Trielli 和 Grace Lee。2021 年。通过半自动化新闻发现工具理解和支持新闻实践。ACM 人机交互论文集 5,CSCW2(2021 年 10 月),1-30。https://doi.org/10.1145/3479550 [17] Wolfgang Donsbach。2012 年。记者的角色认知。《国际传播百科全书》,Wolfgang Donsbach(编辑)。John Wiley & Sons, Ltd,英国奇切斯特,wbiecj010.pub2。https://doi.org/10.1002/9781405186407.wbiecj010.pub2 [18] Sharon Dunwoody。2021 年。科学新闻:数字时代的前景。摘自《劳特利奇公共科学技术传播手册》(第 3 版)。劳特利奇。[19] David Freeman Engstrom、Daniel E. Ho、Catherine M. Sharkey 和 Mariano-Florentino Cuéllar。2020 年。算法政府:联邦行政机构中的人工智能。技术报告。美国行政会议。https://www.ssrn.com/abstract=3551505 [20] Declan Fahy 和 Matthew Nisbet。2011 年。在线科学记者:角色转变和新兴实践。新闻学 12,7(2011 年 10 月)。https://doi.org/10.1177/1464884911412697 [21] Batya Friedman、Peter Kahn 和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2 (2002),第 12 页。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2(1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值(再次)。新闻研究 18,12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10, 10(2022 年 11 月),1731–1755。 https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-modelsJohn Wiley & Sons, Ltd,英国奇切斯特,wbiecj010.pub2。https://doi.org/10.1002/9781405186407.wbiecj010.pub2 [18] Sharon Dunwoody。2021 年。科学新闻:数字时代的前景。载于《劳特利奇科学技术公共传播手册》(第 3 版)。劳特利奇。[19] David Freeman Engstrom、Daniel E. Ho、Catherine M. Sharkey 和 Mariano-Florentino Cuéllar。2020 年。算法政府:联邦行政机构中的人工智能。技术报告。美国行政会议。https://www.ssrn.com/abstract=3551505 [20] Declan Fahy 和 Matthew Nisbet。2011 年。在线科学记者:角色转变和新兴实践。新闻学 12,7 (2011 年 10 月)。https://doi.org/10.1177/1464884911412697 [21] Batya Friedman、Peter Kahn 和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2 (2002),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2 (1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值(再次)。新闻研究 18, 12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10,10(2022 年 11 月),1731–1755 年。https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-modelsJohn Wiley & Sons, Ltd,英国奇切斯特,wbiecj010.pub2。https://doi.org/10.1002/9781405186407.wbiecj010.pub2 [18] Sharon Dunwoody。2021 年。科学新闻:数字时代的前景。载于《劳特利奇科学技术公共传播手册》(第 3 版)。劳特利奇。[19] David Freeman Engstrom、Daniel E. Ho、Catherine M. Sharkey 和 Mariano-Florentino Cuéllar。2020 年。算法政府:联邦行政机构中的人工智能。技术报告。美国行政会议。https://www.ssrn.com/abstract=3551505 [20] Declan Fahy 和 Matthew Nisbet。2011 年。在线科学记者:角色转变和新兴实践。新闻学 12,7 (2011 年 10 月)。https://doi.org/10.1177/1464884911412697 [21] Batya Friedman、Peter Kahn 和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2 (2002),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2 (1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值(再次)。新闻研究 18, 12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10,10 (2022 年 11 月),1731–1755 年。https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-models和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2(2002 年),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2(1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值观(再次)。新闻研究 18,12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10, 10(2022 年 11 月),1731–1755。 https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-models和 Alan Borning。2002 年。价值敏感设计:理论与方法。华盛顿大学技术报告 2(2002 年),12。出版商:Citeseer。[22] Oscar H. Gandy。1980 年。健康信息:补贴新闻。媒体、文化与社会 2,2(1980 年 4 月)。https://doi.org/10.1177/016344378000200201 [23] Tony Harcup 和 Deirdre O'Neill。2017 年。什么是新闻?:重新审视新闻价值观(再次)。新闻研究 18,12(2017 年 12 月),1470–1488。 https://doi.org/10.1080/1461670X.2016.1150193 [24] Ziwei Ji、Nayeon Lee、Rita Frieske、Tizheng Yu、Dan Su、Yan Xu、Etsuko Ishii、Yejin Bang、Andrea Madotto 和 Pascale Fung。 2022.自然语言生成中的幻觉调查。计算。调查(2022 年 11 月)。 https://doi.org/10.1145/3571730 [25] Bronwyn Jones、Rhianne Jones 和 Ewa Luger。 2022.人工智能“无处不在”:解决公共服务新闻中的人工智能清晰度问题。数字新闻 10, 10(2022 年 11 月),1731–1755。 https://doi.org/10.1080/21670811.2022.2145328 [26] Sayash Kapoor 和 Arvind Narayanan。2022 年。人工智能新闻业需要警惕的 18 个陷阱。https://aisnakeoil.substack.com/p/eighteen-pitfalls-to-beware-of-in [27] Percy Liang、Rishi Bommasani、Kathleen Creel 和 Rob Reich。2022 年。现在是制定发布基础模型的社区规范的时候了。https://hai.stanford.edu/news/time-now-develop-community-norms-release-foundation-models
ICLR 2025交织的场景图,用于交织的文本和图像生成评估。Dongping Chen,Ruoxi Chen,Shu Pu,Zhaoyi Liu,Yanru Wu,Caixi Chen,Caixi Chen,Benlin Liu,Yue Huang,Yao Wan,Pan Zhou,Ranjay Krishna International International In In Machine Learning,Machine Learning,2025 ICLR 2025 ICLR 2025 AHA:一个视觉语言的人,以实现失败的竞争,并合理地覆盖了竞争者,并合理地覆盖了杂物。众包工作流的技术。Madeleine Grunde-McLaughlin,Michelle S. Lam,Ranjay Krishna,Daniel S. Weld,Je Q rey Heer Heer ACM ACM Transactions on Computer-Human互动Neurips Neurips Neurips 2024 Dist Me Night Me。Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi, Aniruddha Kembhavi, Ranjay Krishna Advances in neural information processing systems, 2024 NeurIPS 2024 Visual Sketchpad: Sketching as a Visual Chain of Thought for Multimodal Language Models .Yushi Hu*,Weijia Shi*,Xingyu Fu,Dan Roth,Mari Ostendorf,Luke Zettlemoyer,Noah A Smith*,Ranjay Krishna*神经信息处理系统的进步,2024年Neurips 2024 Neurips 2024多语言多样性多样性多样性的多样性改善视觉语言表现。Thao Nguyen, Matthew Wallingford, Sebastin Santy, Wei-Chiu Ma, Sewoong Oh, Ludwig Schmidt, Pang Wei Koh, Ranjay Krishna* Advances in neural information processing systems, 2024 Spotlight Paper award (awarded to top 5%) NeurIPS 2024 The Unmet Promise of Synthetic Training Images: Using Retrieved Real Images Per- forms Better .Scott Geng,Cheng-Yu Hsieh,Vivek Ramanujan,Matthew Wallingford,Chun-Liang Li,Pang Wei Koh*,Ranjay Krishna*神经信息处理系统的进步,2024 Neurips,Neurips 2024 2024 ActionAtlas:Actionatlas:a Videoqa-benchmark for Videoqa Benchmark for-Frain grave grave grave vrained Capention conterition。Mohammadreza Salehi, Jae Sung Park, Aditya Kusupati, Ranjay Krishna , Yejin Choi, Hannaneh Hajishirzi, Ali Farhadi Advances in neural information processing systems, 2024 NeurIPS 2024 NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples .Wenxuan Peng,Baiqi Li,Zhiqiu Lin,Jean de Dieu Nyandwi,Zixian MA,Simran Khanuja,Deva Ramanan,Ranjay Krishna,Graham Neubig在神经信息处理系统中的进步,2024 Neurips 2024 Neurips 2024 Neurips 2024 Superpuse Supperections singleferess singleferess inderfection in Deciatsions nicledere nitferations in Deciatsions niclederiate bulyse nitferiations in Deciatsions anderfelions in Deciatsions:多个世代。Ethan Shen,Alan Fan,Sarah M Pratt,Jae Sung Park,Matthew Wallingford,Sham M Kakade,Ari Holtzman,Ari Holtzman,Ranjay Krishna,Ali Farhadi,Aditya Kusupati在神经信息处理系统中的进步,2024