财政空间也是实施许多必要的结构改革的关键,尤其是在新兴经济体中。这一点尤其重要,因为过去十年来,人均收入的中期增长的前景变得黯淡。相对于高收入的低收入经济体的放缓幅度更高。换句话说,赶上更高生活水平的前景明显降低。同时,债务水平升高正在阻止许多低收入和边境经济体进行他们更快地增长所需的投资,并且在许多地方有债务困扰的高风险。为赞比亚债务解决的最新进展令人鼓舞,但迫切需要其他高度负债的国家的进步。
药物发现正在适应数据科学、信息学和人工智能 (AI) 等新技术,以加速有效治疗的开发,同时降低成本和减少动物实验。投资者、工业和学术科学家以及立法者的兴趣日益浓厚,这表明人工智能正在改变药物发现。成功的药物发现需要优化与药效学、药代动力学和临床结果相关的特性。本综述讨论了人工智能在药物发现的三大支柱中的应用:疾病、靶点和治疗方式,重点是小分子药物。生成化学、机器学习和多属性优化等人工智能技术已使多种化合物进入临床试验。科学界必须仔细审查已知信息以解决可重复性危机。只有在后期管道阶段有足够的基本事实和适当的人为干预的情况下,才能充分发挥人工智能在药物发现中的潜力。
摘要:当前的安全事务中的人机动态将人工智能在循环中的人工智能地位,以进行决策和行动。随着AI认知,速度和武器方面的技术进步,人类操作员越来越多地转移到循环中,AI在战争和国防决策中承担更多责任,战术甚至战略性。人类操作员也从循环中掉下来,将增强的AI系统作为生物学和物理限制,因为在狭窄的应用中人工智能并不相同。那些可能会在未来几十年中向一般AI扩展,并引起了重大的战略,组织甚至存在的关注。此外,自然人类如何反应并与日益高级的,甚至超级智能的AI以及奇异事件互动,将具有破坏性的,变革性的影响对安全事务,甚至在哲学层面上辨别什么是战争是什么。关键词:人工智能,人工智能,战争,奇异性,超人类主义,罪恶,人类机器人团队W
摘要在其最初的1962年运行结束后的几十年后,Jetsons将文化相关的位置保留为衡量技术进步的关键文本。技术记者和行业思想观点经常将其用作比较点,想知道最新的发明是否最终将社会推向了汉娜·巴伯拉(Hanna-Barbera)卡通漫画的标志性图像中所见的技术 - 乌托邦未来世界。基于林恩·斯皮格尔(Lynn Spigel)对中世纪未来主义的分析及其随后的怀旧话语,本文认为,杰森(Jetsons)是一种令人惊讶的富有弹性的流行文化实体,形状,并以对未来的流行理解所塑造的。从节目最初的1962年进行中,它研究了该系列中阐明的基础设施,社会学和经济体系如何预测,反映,破坏,破坏和改善对未来城市的推测。
本研究旨在根据“技术接受与使用统一理论”,找出影响沙特大学教学环境中采用人工智能的因素,并提出有效支持沙特大学教学环境中采用人工智能的建议。本研究采用基于半结构化访谈的定性方法,17 名来自沙特大学的教育技术专业教职员工参与了访谈。根据“技术接受与使用统一理论”,研究结果表明,有四个方面影响着沙特大学教学环境中采用人工智能的方式。在积极影响方面,便利条件排名第一,其次是绩效期望,第三是努力期望,第四是社会影响。该研究提出了一系列建议,以鼓励沙特大学使用人工智能,包括教授教师如何在课堂上使用人工智能,向教育领导者强调实施人工智能的好处,提供人工智能工具、程序和技术支持,以及为教师提供激励措施并促进高等教育人工智能领域的科学研究。
b'与 ED 一样,对于一般的混合态,EC 也很难计算,而且只在极少数特殊情况下才为人所知。但是,对于纯态,例如前面讨论过的 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 状态,EC = \xe2\x88\x92 Tr \xcf\x81 A log 2 ( \xcf\x81 A ) ,等于 ED 。实现纯态稀释过程的最佳方式是利用两种技术:(i)量子隐形传态,我们在一开始就介绍过,它简单地说是一个双方共享的贝尔态可以用来确定地转移一个未知的量子比特态,以及(ii)量子数据压缩[12],它的基本意思是,一个由 n 个量子比特组成的大消息,每个量子比特平均由一个密度矩阵 \xcf\x81 A 描述,可以压缩成可能更少的 k = nS ( \xcf\x81 A ) \xe2\x89\xa4 n 个量子比特;而且只要 n 足够大,就可以忠实地恢复整个消息。我们稍后会讨论量子数据压缩。纯态在渐近极限下的可逆性。有了这两个工具,爱丽丝可以先准备 n 份 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 (总共 2 n 个量子比特)在本地压缩 n 个量子比特为 k 个量子比特,然后 \xe2\x80\x9csend\xe2\x80\x9d 发送给 Bob,并使用共享的 k 个贝尔态将压缩的 k 个量子比特传送给 Bob。然后 Bob 将 k 个量子比特解压缩回未压缩的 n 个量子比特,这些量子比特属于纠缠态 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 的 n 个副本中的一半。因此,Alice 和 Bob 建立了 n 对 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 。这描述了纯态稀释过程的最佳程序。蒸馏的纠缠和纠缠成本被渐近地定义,即两个过程都涉及无限数量的初始状态的副本。对于纯态,EC = ED [7],这意味着这两个过程是渐近可逆的。但对于混合态,这两个量都很难计算。尽管如此,预计 EC ( \xcf\x81 ) \xe2\x89\xa5 ED ( \xcf\x81 ),即蒸馏出的纠缠不能比投入的多。形成的纠缠\xe2\x80\x94 是一个平均量 。然而,正如我们现在所解释的,有一个 EC 的修改,通过对纯态的 EC 取平均值获得,它被称为形成纠缠 EF [11, 13]。任何混合态 \xcf\x81 都可以分解为纯态混合 { pi , | \xcf\x88 i \xe2\x9f\xa9\xe2\x9f\xa8 \xcf\x88 i |} ,尽管分解远非唯一。以这种方式通过混合纯态构建混合态平均需要花费 P'
各州可以独自完成很多事情。然而,现在真正的挑战是国家领导力。拜登政府应该协调美国与欧洲的做法,承诺要求高风险人工智能系统“拥有高质量的数据、文档和可追溯性、透明度、人工监督、准确性和稳健性”,正如拟议的《欧洲人工智能法案》中所述。例如,如果一台机器将决定你是否被录用,那么你至少应该得到监管监督,以确保它使用的数据是正确的,它在过去的表现确实很好,并且没有歧视性,如果你能证明它犯了错误,你可以向某人上诉。如果这个系统是基于伪科学的胡言乱语,你就不应该被它评判。
胆道癌症(BTC)包括一组高度侵略性的肝胆管疾病,代表了所有胃肠道癌的3%,是肝细胞癌第二次最常见的原发性肝癌。在第三阶段发表后十年,随机,ABC-02试验,顺铂加吉西他滨的组合仍然是晚期BTC患者的标准一线治疗。在过去的十年中,已经大量尝试通过使用新药物或将第三种药物添加到顺铂吉米替替滨,以提高参考双线的疗效。不幸的是,尽管添加了不同的细胞毒性药物,但在几项研究中未能改善临床结果,但最近发表的临床试验提供了有趣的结果,而其他一线化学疗法选择目前正在随机III期研究中正在研究中。此外,近年来见证了分子靶向疗法和免疫检查点抑制剂的平行出现,这些新型药物有可能彻底改变晚期BTC的治疗算法。在这篇评论中,我们将提供有关高级BTC管理中目前可用的一线治疗机会的概述,尤其是重点介绍最近发布的数据和在这种情况下正在进行的临床试验。
俄罗斯的人工智能战略:国有企业的作用 2020 年 11 月 作者:Stephanie Petrella、Chris Miller 和 Benjamin Cooper 摘要:2017 年,俄罗斯总统弗拉基米尔·普京宣布,无论哪个国家成为人工智能 (AI) 的领导者,“都将成为世界的统治者”。然而,俄罗斯在人工智能能力方面远远落后于中国和美国等竞争对手。俄罗斯促进人工智能技术发展的战略是什么?俄罗斯精英群体在制定这一战略方面扮演什么角色?俄罗斯的人工智能发展战略的独特之处在于,它不是由政府或私营部门主导,而是由国有企业主导。政府对俄罗斯最大的科技公司 Yandex 的不信任,使该公司被排除在国家人工智能规划之外。与此同时,俄罗斯国防集团 Rostec 公开表示,它更关注其他高科技优先事项,而不是人工智能。因此,俄罗斯的人工智能开发被交给了国有银行 Sberbank,该银行牵头制定了政府支持的人工智能投资计划。俄罗斯联邦总统弗拉基米尔·普京在 2017 年宣称,无论哪个国家成为人工智能 (AI) 的领导者,“都将成为世界的统治者”。1 对于普京来说,人工智能带来的广泛能力为增强国家在国际舞台上的实力提供了可能性。人工智能可用于提高军事能力、推进科学和医学发展以及提高工业效率。普京宣称,俄罗斯军方正试图利用人工智能,用“现代武器系统,包括基于数字技术和人工智能的武器系统”取代旧式武器系统。2 尽管官员们大肆宣扬人工智能的好处,但俄罗斯在人工智能能力方面的许多指标都远远落后于其他国家。从 1996 年到 2017 年,俄罗斯的人工智能能力远远落后于其他国家。
个体化疾病细胞模型是精准医疗重现慢性炎症过程的关键工具。类器官模型可以从诱导性多能干细胞 (iPSC) 或离体原代干细胞中获得。这些模型在过去十年中不断涌现,并被用于以无与伦比的深度重建相应器官特定的生理学和病理学。在癌症研究中,患者来源的癌症类器官为预测治疗反应开辟了新视角,并为肿瘤生物学提供了新见解。在慢性炎症的精准医疗中,基于干细胞的类器官模型目前正在临床前药效学研究(培养皿中的临床研究)中进行评估,并用于临床研究,例如通过重新移植自体上皮类器官来重建肠道屏障完整性。 iPSC 系统的一个特别令人兴奋的特点是它们能够提供对器官系统和炎症性疾病过程的洞察,而这些过程无法通过临床活检进行监测,例如神经退行性疾病中的免疫反应。分化方案的改进和下一代共培养方法旨在体外生成自组织的复杂组织,将是下一步的合理步骤。在这篇小型评论中,我们批判性地讨论了当前最先进的干细胞和类器官技术,以及它们在对抗免疫介导的慢性疾病方面未来的影响、潜力和前景。