癌症是全球死亡的主要原因[1]。随着精确肿瘤学方面的进步,一些有针对性的抗癌药(TAM)改善了患有以前难以治疗的癌症患者的生存和生活质量[2-4],但是它们的高成本限制了他们的使用,可能对癌症患者的死亡率进行影响[5]。这引起了医疗保健专业人员的高度关注[6]。在美国等高收入国家中,TAR疗法主导了抗癌药物的支出[7],每种治疗的总靶向药物中位数估计比传统的化学疗法成本高123 072美元[8]。此外,TAM的价格上涨甚至威胁到保险患者的财务状况[9]。未解决的经济困难可能会导致次优治疗,治疗掉落,症状负担和早逝的风险增加[10,11]。在中国,对于转移性结直肠癌的一线或二线治疗,建议将化学疗法和西妥昔单抗或贝伐单抗结合的治疗方法作为高成本,但由于其高成本而接受它。使用化学疗法和TAMS的患者的平均每个周期直接医疗费用比单独使用化学疗法的患者高931.1美元[12]。
同伴审查了准备N/A提交的N/A出版月亮的出版物Jong-Sik; Kim,Kyujung;汉,东牛; Winiarz,Jeffrey G.;哦,金吴; “有机光赋予材料的最新进展”应用光谱评论2017,53,doi:10.1080/05704928.2017.1323307 Liang,Yichen; Winiarz,Jeffrey G.; “使用基于Triphenyliamine的光致热复合材料对相位放弃的激光束的实际校正” Applied Physics B:Lasers and Optics 2017,123,1-6。月亮,Jong-Sik;史蒂文斯(Stevens),泰勒(Tyler);蒙森,托德c。 Huber,Dale L。;金,阳ho;哦,金吴; Winiarz,Jeffrey G.; “在CW条件下运行的光疗法复合材料中的亚毫秒响应时间” Scientific Reports 2016,6,30810。 Liang,Yichen;王,魏;月亮,Jong-sik; Winiarz,Jeffrey G.; “用功能化的CDSE量子点光敏的有机复合材料的光致敬性能的增强”光学材料2016,58,203-209。 恐惧,T。M。; Doucet,M。;布朗宁,J。F。; Baldwin,J。K. S。; Winiarz,Jeffrey G.; Kaiser,H。; Taub,H。; Sacci,R。L。; Veith,G。M。; “评估在硅电极上形成的固体电解质相:Ex X射线光电子光谱和原位中子反射测定法的比较”物理化学化学物理学2016,18,13927-13940。 月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。 公牛。 2016,DOI 10.1007/S00289-016-1674-7。月亮,Jong-Sik;史蒂文斯(Stevens),泰勒(Tyler);蒙森,托德c。 Huber,Dale L。;金,阳ho;哦,金吴; Winiarz,Jeffrey G.; “在CW条件下运行的光疗法复合材料中的亚毫秒响应时间” Scientific Reports 2016,6,30810。Liang,Yichen;王,魏;月亮,Jong-sik; Winiarz,Jeffrey G.; “用功能化的CDSE量子点光敏的有机复合材料的光致敬性能的增强”光学材料2016,58,203-209。 恐惧,T。M。; Doucet,M。;布朗宁,J。F。; Baldwin,J。K. S。; Winiarz,Jeffrey G.; Kaiser,H。; Taub,H。; Sacci,R。L。; Veith,G。M。; “评估在硅电极上形成的固体电解质相:Ex X射线光电子光谱和原位中子反射测定法的比较”物理化学化学物理学2016,18,13927-13940。 月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。 公牛。 2016,DOI 10.1007/S00289-016-1674-7。Liang,Yichen;王,魏;月亮,Jong-sik; Winiarz,Jeffrey G.; “用功能化的CDSE量子点光敏的有机复合材料的光致敬性能的增强”光学材料2016,58,203-209。恐惧,T。M。; Doucet,M。;布朗宁,J。F。; Baldwin,J。K. S。; Winiarz,Jeffrey G.; Kaiser,H。; Taub,H。; Sacci,R。L。; Veith,G。M。; “评估在硅电极上形成的固体电解质相:Ex X射线光电子光谱和原位中子反射测定法的比较”物理化学化学物理学2016,18,13927-13940。月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。 公牛。 2016,DOI 10.1007/S00289-016-1674-7。月亮,Jong-Sik; Liang,Yichen;金,伊恩;哦,金吴; Winiarz,Jeffrey G.“水溶性波长可调ingap和INP量子点的形成” Polym。公牛。2016,DOI 10.1007/S00289-016-1674-7。2016,DOI 10.1007/S00289-016-1674-7。
The paper's co-first authors are Yan-Ruide Li, Yang Zhou and Jiaji Yu, all from UCLA.Other UCLA authors include Yu Jeong Kim, Miao Li, Derek Lee, Kuangyi Zhou, Yuning Chen, Yichen Zhu, Yu-Chen Wang, Zhe Li, Yanqi Yu, Wenbin Guo, Xinjian Cen, Tiffany Husman, Aarushi Bajpai, Adam Kramer, Matthew Wilson, Ying Fang, Jie Huang, Shuo Li, Yonggang Zhou, Yuchong Zhang, Zoe Hahn, Enbo Zhu, Calvin Pan, Aldons J. Lusis,
Shivam Goel, Panagiotis Lymperopoulos, Ravenna Thielstrom, Evan Krause, Patrick Feeney, Pierrick Lorang, Sarah Schneider, Yichen Wei, Eric Kildebeck, Stephen Goss, Michael C. Hughes, Liping Liu, Jivko Sinapov, Matthias Scheutz 2:30-3:45pm Is it possible to find the single nearest neighbor高度的查询?kai -ming ting;高什·沃西(Takashi Washio); Ye Zhu;杨Xu; Kaifeng Zhang提取问题的实验设计:错误得分和回答长度Amer Farea的影响;弗兰克·艾默特·斯特里布(Frank Emmert-Streib)*解释建模:通过推理其隐性道德判断,对句子的社会基础; MariaMihaelaTruşcǎ; Marie-Francine Moens
Karl Berggren 1,36,36,Qiangfei Xia 2,36,Konstantin K Likharev 3,Dmitri B Strukov 4,Hao Jiang 5,Thomas Mikolajick 6,Damien Querlioz 7,Martin Salinga,Martin Salinga,John Shu 8,Erickson,Erickson,19 Hoskins 13,Matthew W Daniels 13栗,Advait Madhavan 13,14,James A Liddle 13,Jabez J 13,McClellan,McClellan,Jennifer Rupp 16,17,Stephen S Nonenmann 18,Kwang-to ,保罗·利马(Paul Lima),亚历山大·费拉里(Alexander Ferrari),25 Nder n Tait 26,Yichen Shen 27,Huaiyu Meng 27,Charles Roques-Carmes 1,Zengguang Cheng 28,29栗,Harish Bhaskaran 28,Deep Jariwala 30 4和Arijit Raychowdhury 35
[1]。Zhongzhan Huang,Pan Zhou,Shuicheng Yan,Liang Lin。 通过缩放网络长跳连接进行扩散模型的更稳定训练。 神经信息处理系统(神经),2023 [2]。 上海Gao,Pan Zhou,Ming -Ming Cheng,Shuicheng Yan。 掩盖扩散变压器是强大的图像合成器。 国际计算机视觉会议(ICCV),2023 [3]。 li,Xiangyu Xu,Hehe Fan,Pan Zhou,Jun Liu,Jia -Wei Liu,Jiahe Li,Jussi Keppo,Mike Zheng Shoun,Shuichen Yan。 史密图:时空临时隐私的行动识别。 国际计算机视觉会议(ICCV),2023 [4]。 Alex Jinpeng Wang,Pan Zhou,Mike Zheng Shou,Shuicheng Yan。 位置引导的文本提示,以进行视力 - 语言预训练。 IEEE计算机视觉和模式识别会议(CVPR),2023 [5]。 pan Zhou,Xingyu Xie,Shuicheng Yan。 胜利:自适应梯度算法的重量 - 纳斯特诺夫加速度。 国际学习表征会议(ICLR),2023年(口头)[6]。 Jiachun Pan*,Pan Zhou*,Shuicheng Yan。 了解为什么掩盖重建预处理有助于下游任务。 国际学习表征会议(ICLR),2023年(*同等贡献)[7]。 Bowen Dong,Pan Zhou,Shuicheng Yan,Wangmeng Zuo。 lpt:长时间的提示调整以进行图像分类。 国际学习表现会议(ICLR),2023 [8]。 chenyang si*,weihao yu*,pan Zhou,Yichen Zhou,Xinchao Wang,Shuichen Yan。Zhongzhan Huang,Pan Zhou,Shuicheng Yan,Liang Lin。通过缩放网络长跳连接进行扩散模型的更稳定训练。神经信息处理系统(神经),2023 [2]。上海Gao,Pan Zhou,Ming -Ming Cheng,Shuicheng Yan。掩盖扩散变压器是强大的图像合成器。国际计算机视觉会议(ICCV),2023 [3]。li,Xiangyu Xu,Hehe Fan,Pan Zhou,Jun Liu,Jia -Wei Liu,Jiahe Li,Jussi Keppo,Mike Zheng Shoun,Shuichen Yan。史密图:时空临时隐私的行动识别。国际计算机视觉会议(ICCV),2023 [4]。Alex Jinpeng Wang,Pan Zhou,Mike Zheng Shou,Shuicheng Yan。 位置引导的文本提示,以进行视力 - 语言预训练。 IEEE计算机视觉和模式识别会议(CVPR),2023 [5]。 pan Zhou,Xingyu Xie,Shuicheng Yan。 胜利:自适应梯度算法的重量 - 纳斯特诺夫加速度。 国际学习表征会议(ICLR),2023年(口头)[6]。 Jiachun Pan*,Pan Zhou*,Shuicheng Yan。 了解为什么掩盖重建预处理有助于下游任务。 国际学习表征会议(ICLR),2023年(*同等贡献)[7]。 Bowen Dong,Pan Zhou,Shuicheng Yan,Wangmeng Zuo。 lpt:长时间的提示调整以进行图像分类。 国际学习表现会议(ICLR),2023 [8]。 chenyang si*,weihao yu*,pan Zhou,Yichen Zhou,Xinchao Wang,Shuichen Yan。Alex Jinpeng Wang,Pan Zhou,Mike Zheng Shou,Shuicheng Yan。位置引导的文本提示,以进行视力 - 语言预训练。IEEE计算机视觉和模式识别会议(CVPR),2023 [5]。pan Zhou,Xingyu Xie,Shuicheng Yan。胜利:自适应梯度算法的重量 - 纳斯特诺夫加速度。国际学习表征会议(ICLR),2023年(口头)[6]。Jiachun Pan*,Pan Zhou*,Shuicheng Yan。 了解为什么掩盖重建预处理有助于下游任务。 国际学习表征会议(ICLR),2023年(*同等贡献)[7]。 Bowen Dong,Pan Zhou,Shuicheng Yan,Wangmeng Zuo。 lpt:长时间的提示调整以进行图像分类。 国际学习表现会议(ICLR),2023 [8]。 chenyang si*,weihao yu*,pan Zhou,Yichen Zhou,Xinchao Wang,Shuichen Yan。Jiachun Pan*,Pan Zhou*,Shuicheng Yan。了解为什么掩盖重建预处理有助于下游任务。国际学习表征会议(ICLR),2023年(*同等贡献)[7]。Bowen Dong,Pan Zhou,Shuicheng Yan,Wangmeng Zuo。lpt:长时间的提示调整以进行图像分类。国际学习表现会议(ICLR),2023 [8]。chenyang si*,weihao yu*,pan Zhou,Yichen Zhou,Xinchao Wang,Shuichen Yan。启动变压器。神经信息处理系统(Neurips),2022(口服)(*均等贡献)[9]。Yuxuan Liang,Pan Zhou,Roger Zimmermann,Shuicheng Yan。双形式:局部全球分层变压器,以进行有效的视频识别。欧洲计算机视觉会议(ECCV),2022 [10]。Junbin Xiao,Pan Zhou,Tat -Seng Chua,Shuicheng Yan。 视频问题的视频图形变压器Junbin Xiao,Pan Zhou,Tat -Seng Chua,Shuicheng Yan。视频问题的视频图形变压器
Luze Scalco de Vascincelos,1,9 Yichen Yan,2,9 Putkar Maharjan,1,8 Sayam Karar,3分钟Zhang,3 Bowen Yao,2 Hongbian li,1 Sidi,1 Sidi 2,1 Sidi 2,1 Eric Williams,1 Sandhy of The Sandhy of the Sandhy Solorzano-vargas,4是Hong,2 Yingjie du,2 Zixao Liu,2 Fumiaki Iwane,Charles Block 3,Andrew T. Repetski 1,1 Philip Tan,1 Anopan Wang,1MartıMartıMartır,1MartıMartır,́R。 Ximin H, *和Nanshu Lu 1,3,7,10, * 1航空航天工程与工程学系,得克萨斯大学和奥斯汀大学,奥斯汀,德克萨斯州奥斯汀,美国德克萨斯州78712,美国2美国2材料科学与工程系,洛杉矶,洛杉矶,洛杉矶,洛杉矶美国德克萨斯州奥斯汀大学奥斯汀分校电气和计算机工程,美国4戴维·盖芬医学院,医学院,洛杉矶,洛杉矶,加利福尼亚州洛杉矶,加利福尼亚州90095,美国5德克萨斯大学奥斯汀大学奥斯汀分校,美国德克萨斯州奥斯汀分校同样10铅联系 *紧随其后:jose.millan@austin.unexas.edu(J.D.D.R.M.),xinhe@ucla.edu(X.H.),nanshulu@utexas.edu(n.l。)https://doi.org/10.1016/j.celbio.2024.100004https://doi.org/10.1016/j.celbio.2024.100004
(UG)2024年春季06/2024 Yunzhou That(MS)02/2023 Meihui(UG→Lip这是2022年弗恩兰(Fernland)的阿尔托大学(Aalto University)的学术射线(UG→博士学位。 MS和UCLA)2022夏季Chenhaon(UG→MS和UC Berley)Sumer 2022 - 12/20222222222222222222222222222222222222222222222222222年20220222222221:2021- 2021 div>
[3] Huan Zhao; Linghan Zhu;江西li; Vigneshwaran Chandrasekaran;乔恩·凯文·鲍德温(Jon Kevin Baldwin);迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski;李阳;汉·htoon。操纵近红外量子光生成的层间激子。纳米字母。2023,23,11006-11012。[4] Xiangzhi li;安德鲁·琼斯(Andrew C Jones); Junho Choi; Huan Zhao; Vigneshwaran Chandrasekaran;迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski; ma rta a tschudin;帕特里克·雷瑟(Patrick Reiser);大卫百老汇。在应变工程WSE2/NIPS3异质结构中,接近诱导的手性量子光生产生。自然材料。2023,22,1311-1316。[5] Huan Zhao;迈克尔·佩特斯(Michael t Pettes); Zheng;汉·htoon。位点对照的电信波长单光子发射器在原子上薄的Mote2中。nat Commun。2021,12,6753。[6] Huan Zhao; Beibei Wang; Fanxin Liu;小对Haozhe Wang; Wei Sun Leong;马克·史蒂文斯(Mark J Stevens); Priya Vashishta; aiichiro nakano;庆。流体流有助于范德华材料的确定性折叠。高级功能材料。2020,30,1908691。[7] Tong Wu†; Huan Zhao†; Fanxin Liu; Jing Guo;汉王。设备的机器学习方法 - 基于随机设备设备的玻尔兹曼机器的电路合作。ARXIV预印ARXIV:1905.04431。2019。[8] Shanyuan Niu†; Huan Zhao†; Yucheng Zhou; Huaixun Huyan;博伊恩赵;江宾;斯蒂芬·B·克罗宁(Stephen B Cronin);汉王; Jayakanth Ravichandran。中波和长波红外线二色性二色性二色性在六角形钙钛矿甲状腺素中。材料的化学。2018,30,4897-4901。[9] Shanyuan Niu†;格雷厄姆·乔†; Huan Zhao†; Yucheng Zhou;托马斯·奥维斯(Thomas Orvis); Huaixun Huyan;贾德·萨尔曼(Jad Salman); Krishnamurthy Mahalingam;布列塔尼·乌尔文(Brittany Urwin);江宾·吴(Jiangbin Wu)巨大的光学各向异性在准尺寸晶体中。nat光子学。2018,12,392。[10] Ivan Esqueda; Huan Zhao;汉王。有效的学习和横杆操作,具有原子薄的2-D材料化合物突触。应用物理学杂志。2018,124,152133。[11] Zhipeng Dong; Huan Zhao;唐·迪马齐奥(Don Dimarzio); Myung-Geun Han; Lihua Zhang;杰西·蒂斯(Jesse Tice);汉王; Jing Guo。由2-D材料启用了原子上的CBRAM:缩放行为和性能限制。电子设备上的IEEE交易。2018,65,4160-4166。[12] Huan Zhao; Zhipeng Dong;他天;唐·迪马尔兹(Don Dimarzi); Myung-Geun Han; Lihua Zhang;小对Fanxin Liu;朗山; Shu-Jen Han。原子上薄的femtojoule候选装置。高级材料。2017,29,1703232。[13] Bolin Liao†; Huan Zhao†; Ebrahim Najafi;小对他天;杰西·蒂斯(Jesse Tice);奥斯汀·J·明尼奇(Austin J Minnich);汉王;艾哈迈德·H·泽尔(Ahmed H Zewail)。黑磷中各向异性光载体动力学的时空成像。纳米字母。2017,17,3675-3680。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。 单层钼二硫化物纳米纤维具有高光学各向异性。 高级光学材料。 2016,4,756-762。 纳米研究。 2015,8,3651-3661。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。单层钼二硫化物纳米纤维具有高光学各向异性。高级光学材料。2016,4,756-762。纳米研究。2015,8,3651-3661。[15] Huan Zhao†; Jiangbin Wu†;宗宗; qiushi guo;小王;富兰斯Xia;李阳; Pingheng tan;汉王。在各向异性原子上稀薄的鼻鼻中的层间相互作用。[16] Yichen Jia; Huan Zhao; qiushi guo;小王;汉王;冯米亚。可调节的等离子体 - 声子偏振子中的分层石墨烯 - 甲状腺氮化硼异质结构。acs光子学。2015,2,907-912。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。 二维材料用于纳米素化的应用。 纳米素化学。 2015,4,128-142。 [18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。 单层黑磷中高度各向异性和稳健的激子。 纳米技术。 2015,10,517-521。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。二维材料用于纳米素化的应用。纳米素化学。2015,4,128-142。[18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。单层黑磷中高度各向异性和稳健的激子。纳米技术。2015,10,517-521。
洪淑婷,1,2,3,10 Gabriel R. Linares,1,2,3,10 张文轩,4 余云荪,1,2,3 Gopinath Krishnan,8 Stacee Mendonca,4 洪莎拉,4 石英晓,1,2,3 Manuel Santana,1,2,3 Chuol Kueth,5 Samantha Macklin-Isquierdo,5 Sarah Perry,6 Sarah Duhaime,7 Claudia Maios,7 张乔纳森,1,2,3 Joscany Perez,1,2,3 Alexander Couto,1,2,3 Jesse Lai,1,2,3 李逸尘,1,2,3 Samuel V. Alworth,4 Eric Hendricks,1,2,3 王耀明,3,9 Berislav V. Zlokovic,3,9 Dion K. Dickman, 6 J. Alex Parker, 7 Daniela C. Zarnescu, 5 Fen-Biao Gao, 8 和 Justin K. Ichida 1,2,3,11,* 1 南加州大学凯克医学院干细胞生物学和再生医学系,美国加利福尼亚州洛杉矶 90033 2 Eli 和 Edythe Broad CIRM 南加州大学再生医学和干细胞研究中心,美国加利福尼亚州洛杉矶 90033 3 南加州大学凯克医学院 Zilkha 神经遗传研究所,美国加利福尼亚州洛杉矶 90033 4 AcuraStem Incorporated,美国加利福尼亚州蒙罗维亚 91016 5 宾夕法尼亚州立大学医学院细胞和分子生理学系,美国宾夕法尼亚州赫尔希 17033 6 南加州大学神经生物学系,美国加利福尼亚州洛杉矶 90089 7 蒙特利尔大学医院研究中心 (CRCHUM),蒙特利尔大学病理学和细胞生物学系,魁北克省蒙特利尔 8 美国马萨诸塞州伍斯特市陈曾熙医学院神经病学系,邮编 01605 9 美国加利福尼亚州洛杉矶市南加州大学凯克医学院生理学和神经科学系,邮编 90033 10 这些作者贡献相同 11 主要联系人 * 通信地址:ichida@usc.edu https://doi.org/10.1016/j.cell.2023.01.005