摘要:人工智能 (AI) 是一种强大的技术,具有多种功能,如今在所有行业中都开始显现出来。然而,与其他行业相比,人工智能在建筑行业的普及程度相当有限。此外,尽管人工智能是建筑环境研究的热门话题,但研究建筑行业人工智能采用水平低的原因的综述研究有限。本研究旨在通过确定人工智能的采用挑战以及为建筑行业提供的机遇来缩小这一差距。为了实现这一目标,该研究采用了 PRISMA 协议的系统文献综述方法。此外,文献的系统综述侧重于建筑项目生命周期的规划、设计和施工阶段。审查结果表明:(a) 人工智能在规划阶段特别有益,因为建筑项目的成功取决于准确的事件、风险和成本预测;(b) 采用人工智能的主要机会是通过使用大数据分析和改进工作流程来减少花在重复任务上的时间; (c) 将人工智能融入建筑工地的最大挑战是该行业的碎片化性质,这导致了数据获取和保留的问题。研究结果为建筑行业的各方提供了有关人工智能适应性的机会和挑战的信息,并有助于提高市场对人工智能实践的接受度。
1 昆士兰科技大学建筑与建筑环境学院,2 George Street,布里斯班 QLD 4000,澳大利亚 2 圣卡塔琳娜联邦大学技术学院,Campus Universitario,Trindade,Florian ó polis,SC 88040-900,巴西 3 萨拉曼卡大学 Bisite 研究小组,37007 萨拉曼卡,西班牙;corchado@usal.es 4 空气研究所,物联网数字创新中心,37188 萨拉曼卡,西班牙 5 大阪工业大学工程学院电子、信息和通信系,大阪 535-8585,日本 6 阿卜杜勒阿齐兹国王大学高性能计算中心,Al Ehtifalat St,吉达 21589,沙特阿拉伯; rmehmood@kau.edu.sa 7 香港树仁大学经济及金融系,香港北角伟翠街 10 号,中国;ymli@hksyu.edu 8 亚利桑那州立大学公共事务学院,美国亚利桑那州凤凰城北中央大道 411 号,邮编 85004;karen.mossberger@asu.edu 9 昆士兰科技大学管理学院,澳大利亚昆士兰州布里斯班乔治街 2 号,邮编 4000;kevin.desouza@qut.edu.au * 通讯地址:tan.yigitcanlar@qut.edu.au;电话: +61-7-3138-2418
1 昆士兰科技大学建筑环境学院,2 George Street,布里斯班 4000,昆士兰州,澳大利亚;ruth.kankanamge@hdr.qut.edu.au (N.K.); massimo.regona@hdr.qut.edu.au (M.R.); andres.ruizmaldonado@connect.qut.edu.au (A.R.M.); bridget.rowan@connect.qut.edu.au (B.R.); hanseung.ryu@connect.qut.edu.au (A.R.)2 昆士兰科技大学管理学院,2 George Street,布里斯班 4000,昆士兰州,澳大利亚; kevin.desouza@qut.edu.au 3 萨拉曼卡大学 Bisite 研究小组,37007 萨拉曼卡,西班牙;corchado@usal.es 4 航空研究所,物联网数字创新中心,37188 萨拉曼卡,西班牙 5 大阪工业大学工学院电子、信息与通信系,大阪 535-8585,日本 6 阿卜杜勒阿齐兹国王大学高性能计算中心,Al Ehtifalat St,吉达 21589,沙特阿拉伯;rmehmood@kau.edu.sa 7 香港树仁大学可持续房地产研究中心,10 Wai Tsui Cres,北角,香港,中国;ymli@hksyu.edu * 通信地址:tan.yigitcanlar@qut.edu.au;电话: + 61-7-3138-2418
摘要 - 急流尖峰神经网络(SNN)的灵感来自生物神经系统的工作原理,这些原理提供了独特的时间动态和基于事件的处理。最近,通过时间(BPTT)算法的错误反向传播已成功地训练了局部的SNN,其性能与复杂任务上的人工神经网络(ANN)相当。但是,BPTT对SNN的在线学习方案有严重的局限性,在该场景中,需要网络同时处理和从传入数据中学习。特别是,当BPTT分开推理和更新阶段时,它将需要存储所有神经元状态以及时计算重量更新。要解决这些基本问题,需要替代信贷分配计划。在这种情况下,SNN的神经形态硬件(NMHW)实现可以极大地利用内存计算(IMC)概念,这些概念(IMC)概念遵循记忆和处理的脑启发性搭配,进一步增强了他们的能量效率。在这项工作中,我们利用了与IMC兼容的生物学启发的本地和在线培训算法,该算法近似于BPTT,E-Prop,并提出了一种支持使用NMHW的经常性SNN推理和培训的方法。为此,我们将SNN权重嵌入了使用相位变更内存(PCM)设备的内存计算NMHW上,并将其集成到硬件中的训练设置中。索引术语 - 在线培训,尖峰神经网络,神经形态硬件,内存计算,相位变化内存我们使用基于PCM的仿真框架和由256x256 PCM Crossbar阵列的14NM CMOS技术制造的内存内计算核心组成的NMHW开发了模拟设备的精确度和瑕疵的方法。我们证明,即使对4位精确度也是强大的,并实现了32位实现的竞争性能,同时为SNN提供了在线培训功能,并利用了NMHW的加速收益。