UT55A 数字指示调节器(电源 100-240 V AC)(配备传送输出或 15 V DC 回路电源,3 个 DI 和 3 个 DO) 标准型 位置比例型 加热 / 冷却型 无 远程(1 个附加辅助模拟)输入、6 个附加 DI、5 个附加 DO 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*1) (*2) 远程(1 个附加辅助模拟)输入、1 个附加 DI 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*2) 5 个附加 DI 和 5 个附加 DO 远程(1 个附加辅助模拟)输入和 1 个附加 DI 远程(1 个附加辅助模拟)输入、6 个附加 Dl 和 5 个附加 DO 5 个附加 DI 和 15 个附加 DO (*1) 3附加辅助模拟输入和 3 个附加 DI 无 RS-485 通信(最大 38.4 kbps,2 线/4 线) 以太网通信(带串行网关功能) CC-Link 通信(带 Modbus 主站功能) PROFIBUS-DP 通信(带 Modbus 主站功能) DeviceNet 通信(带 Modbus 主站功能) 英语(默认。可通过设置切换到其他语言。) 德语(默认。可通过设置切换到其他语言。) 法语(默认。可通过设置切换到其他语言。) 西班牙语(默认。可通过设置切换到其他语言。) 白色(浅灰色) 黑色(浅炭灰色) 始终为 “-00” 附加直接输入(TC 和,3 线/4 线 RTD)和电流至远程输入(1 个附加辅助模拟量),1 个 DI 待删除 (*4) 24 V DC 回路电源 (*5) 加热器断线警报 (*6) 电源 24 V AC/DC 涂层 (*7)
UT55A 数字指示调节器(电源 100-240 V AC)(配备传送输出或 15 V DC 回路电源,3 个 DI 和 3 个 DO) 标准型 位置比例型 加热 / 冷却型 无 远程(1 个附加辅助模拟)输入、6 个附加 DI、5 个附加 DO 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*1) (*2) 远程(1 个附加辅助模拟)输入、1 个附加 DI 和 RS-485 通信(最大 19.2 kbps,两线制 / 四线制)(*2) 5 个附加 DI 和 5 个附加 DO 远程(1 个附加辅助模拟)输入和 1 个附加 DI 远程(1 个附加辅助模拟)输入、6 个附加 Dl 和 5 个附加 DO 5 个附加 DI 和 15 个附加 DO (*1) 3附加辅助模拟输入和 3 个附加 DI 无 RS-485 通信(最大 38.4 kbps,2 线/4 线) 以太网通信(带串行网关功能) CC-Link 通信(带 Modbus 主站功能) PROFIBUS-DP 通信(带 Modbus 主站功能) DeviceNet 通信(带 Modbus 主站功能) 英语(默认。可通过设置切换到其他语言。) 德语(默认。可通过设置切换到其他语言。) 法语(默认。可通过设置切换到其他语言。) 西班牙语(默认。可通过设置切换到其他语言。) 白色(浅灰色) 黑色(浅炭灰色) 始终为 “-00” 附加直接输入(TC 和,3 线/4 线 RTD)和电流至远程输入(1 个附加辅助模拟量),1 个 DI 待删除 (*4) 24 V DC 回路电源 (*5) 加热器断线警报 (*6) 电源 24 V AC/DC 涂层 (*7)
UT35A 数字指示调节器 (电源:100-240 V AC)( 配备转发输出或 15 V DC 回路电源、2 个 DI 和 3 个 DO) 标准型 位置比例型 加热/冷却型 无 2 个附加 DI、2 个附加 DO 5 个附加 DI、5 个附加 DO 无 RS-485 通信 ( 最大 38.4 kbps、2 线/4 线 ) 以太网通信 ( 带串行网关功能 ) CC-Link 通信 ( 带 Modbus 主站功能 ) PROFIBUS-DP 通信 ( 带 Modbus 主站功能 ) DeviceNet 通信 ( 带 Modbus 主站功能 ) 英语 ( 默认 。可通过设置切换到其他语言。)德语 ( 默认 。可通过设置切换到其他语言。)法语 ( 默认 。可通过设置切换到其他语言。)西班牙语(默认。可通过设置切换到其他语言。)白色(浅灰色) 黑色(浅炭灰色) 始终“-00” 24 V DC 环路电源 (*2) 加热器断线警报 (*3) 电源 24 V AC/DC 涂层 (*4) 端子盖 非隔离远程输入(请参阅通用规格 GS 05P01D31-81EN。)
从“防灾和气候变化”的角度出发,尽可能地追求能源的本地生产和消费。在利用私营部门的计划的同时,努力扩大横滨市太阳能发电等可再生能源的使用 能源消费大市横滨积极采用可再生能源,将有助于加快能源供应。无论能源结构如何,都追求最大限度地采用可再生能源
燃油压力传感器的开发和评估 汽油直喷发动机的使用范围正在扩大,成为提高燃油经济性的有效手段。该发动机系统使用高压喷射器,可在高达 20 MPa 的压力下输送最佳量的燃油,并采用高精度空燃比反馈控制,以提高发动机功率和燃油效率。燃油压力控制对于维持和提高发动机性能非常重要。MT300 高压范围型号是燃油压力传感器开发、评估和校准的理想选择。
肾小球病理学发现的分类 UP LEARNING 和肾病专家 - AI 集体 ENGROCTIVE 方法 Eiichiro Uchino #A,B Yugami C , Sachiko Minamiguchi f , Hironi Haga f , Motoko Yanagita B,g , Yasushi Ono D,HA) 京都大学医学院医学智能系统系,日本京都 B) 日本京都肾脏病学系,日本京都,京都,京都,京都,京都,京都,京都,日本 D) 京都大学医学院生物医学数据智能系,日本京都 E) 京都大学医院医学信息学和管理规划部,日本京都 F) 京都大学医学院诊断病理学系,日本京都 H) Rise,药物开发数据智能平台小组,日本横滨 # 这些作者贡献者对这项工作做出贡献。 Running title: Glomeruli classification by deep learning Keywords: renal pathology, artificial intelligence, deep learning, collective intelligence Corresponding authors: Yasushi Okuno, Department of Biomedical Data Intelligence, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 881, FAX: +81-75-751-4881, E-mail: okuno.yasushi.4c@kyoto-u.ac.jp and Motoko Yanagita, Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan Phone: +81-75-751-3860, FAX: +81-75-751-3859, E-mail: motoy@kuhp.kyoto-u.ac.jp Abstract Background Automated classification of glomerular pathological findings is potentially beneficial in establishing an efficient and objective diagnosis in renal pathology.虽然先前的研究已经验证了用于对整体硬化和肾小球细胞增殖进行分类的人工智能(AI)模型,但诊断还需要其他一些肾小球病理学发现。这些人工智能模型与临床医生之间的合作是否能提高诊断性能还不得而知。在这里,我们开发了人工智能模型来对肾小球图像进行分类,以获得病理诊断所需的主要发现,并研究这些模型是否可以提高肾病科医生的诊断能力。方法
• TOKU 高品质叶片电机和行星齿轮箱,配备长寿命润滑脂 • 负载限制器 • 高强度铸钢外壳,经久耐用 • 结构紧凑、重量轻,易于操作 • 延长工作周期和频繁反转 • 可变速度,可准确升降 • 带安全锁的合金钢钩(底部钩配有推力轴承,操作方便) • 可调节负载限制器(不适用于 TMM、TCR Mini 或 TCS) • 故障安全自动盘式制动器(全封闭)确保断电时负载不会掉落 • 紧急停止 • 机械上限和下限提升限位 • 提升高度可满足您的需求 • 可选择绳索、吊坠控制或控制系统 • 噪音低至 80 dB(消音器和过滤器易于更换) • 空气消耗低(TCR 和 TMH 型号) • 气压从 0.4 到 0.63 MPa • 在恶劣环境下耐用 • 维护成本低 • 在适当条件下易于获得备件 • 提升机机身在日本制造,其他所有部件在欧洲制造 • 欧洲/日本制造的高品质校准负载链具有 5:1 FOS • 高速(TCS 和 TMH 型号) • 特殊设计的起重机和小车 • 符合 EC 指令 2014/34/EU 的 Ex 分类 (ATEX