摘要。目的:这项研究的目的是使用Yolov8n,Yolov8s和Yolov8M在各种图像条件下检测车辆类型,并进行增强。方法:本研究利用黎明数据集上的Yolov8方法。该方法涉及使用预训练的卷积神经网络(CNN)处理图像并输出所检测到的对象的边界框和类。此外,还应用了数据增强来提高模型从不同方向和观点识别车辆的能力。结果:测试结果的MAP值如下:没有数据扩展,Yolov8n达到了约58%,Yolov8S得分左右约为68.5%,而Yolov8M的MAP值约为68.9%。然而,在应用水平翻转数据扩大后,Yolov8n的地图增加到约60.9%,Yolov8s提高到约62%,而Yolov8M的地图卓越,地图约为71.2%。使用水平翻转数据增强提高了所有三种Yolov8模型的性能。Yolov8M模型达到了71.2%的最高地图值,表明其在应用水平翻转增强后检测物体的有效性很高。新颖性:这项研究通过采用最新版本的Yolo,Yolov8来介绍新颖性,并将其与Yolov8n,Yolov8s和Yolov8M进行比较。使用数据增强技术(例如水平翻转)增加数据变化的使用也很新颖,在扩展数据集并提高模型识别对象的能力方面。关键字:CNN,数据增强,黎明,对象检测,Yolov8于2023年11月收到 /修订2024年2月 / 2024年2月接受此工作,该工作已在创意共享署名4.0国际许可下获得许可。
由于缺乏全面的数据集和缺陷类型的多样性,自动检测增材制造的 Ti6Al4V 材料中的微观结构缺陷面临巨大挑战。本研究介绍了一种应对这些挑战的新方法,即开发专门针对扫描电子显微镜 (SEM) 图像的微观结构缺陷数据集 (MDD)。我们使用此数据集训练和评估了多个 YOLOv8 模型(YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l 和 YOLOv8x),以评估它们在检测各种缺陷方面的有效性。主要结果表明,YOLOv8m 在精度和召回率之间实现了平衡,使其适用于可靠地识别各种缺陷类型中的缺陷。另一方面,YOLOv8s 在效率和速度方面表现出色,尤其是在检测“孔隙”缺陷方面。该研究还强调了 YOLOv8n 在检测特定缺陷类型方面的局限性以及与 YOLOv8l 和 YOLOv8x 相关的计算挑战。我们的方法和发现有助于科学地理解增材制造中的自动缺陷检测。MDD 的开发和 YOLOv8 模型的比较评估通过提供检测微结构缺陷的强大框架来推进知识水平。未来的研究应侧重于扩展数据集和探索先进的 AI 技术,以提高检测准确性和模型泛化能力。
