PI3K 抑制可逆转单个细胞而非电场中细胞群的迁移方向 Y Sun, H Yue, C Copos, K Zhu, Y Zhang, Y Sun, X Gao, B Reid, F Lin, M Zhao, A Mogilner 摘要 运动细胞在电场中定向迁移,这一过程称为趋电性。趋电性在伤口愈合、发育、细胞分裂和神经生长中起重要作用。不同类型的细胞在电场中向相反方向迁移,要么向阴极,要么向阳极,同一个细胞可以根据化学条件切换方向。我们之前报告过,单个鱼角质细胞会感知电场并迁移到阴极,而抑制 PI3K 会使单个细胞逆转到阳极。许多生理过程依赖于集体而非个体的细胞迁移,因此我们在此报告了电场中黏性细胞群的定向迁移。任何大小的未抑制细胞群都会移动到阴极,速度随着细胞群大小的增加而降低,方向性增加。令人惊讶的是,大群 PI3K 抑制细胞会向阴极移动,方向与单个细胞向阳极移动的方向相反,而这些小群体不会持续定向。在大群体中,细胞的速度分布不均匀:最快的细胞位于未抑制组的最前面,但位于 PI3K 抑制组的中间和后面。我们的结果与计算模型支持的假设最为一致,即群体内部和边缘的细胞对方向信号的解释不同。也就是说,群体内部的细胞无论其化学状态如何都会被引导到阴极。同时,边缘细胞的行为与单个细胞一样:它们分别在未抑制/PI3K 抑制组中被引导到阴极/阳极。结果,所有细胞都会将未受抑制的群体驱向阴极,但内层细胞和边缘细胞之间的机械拉锯战会将大部分细胞位于内部的大型 PI3K 抑制群体引导至阴极,而小群体则无方向性。运行标题:细胞群体中的双向趋电性意义说明:运动细胞在电场中定向迁移。这种行为——趋电性——在许多生理现象中都很重要。单个鱼角质细胞迁移到阴极,而 PI3K 的抑制会使单个细胞逆转到阳极。未受抑制的细胞群移动到阴极。令人惊讶的是,大量的 PI3K 抑制细胞也会移动到阴极,方向与单个细胞相反。最快的细胞位于未受抑制组的最前面,但在 PI3K 抑制组的中间和后方。我们假设内细胞和边缘细胞对方向信号的解释不同,边缘细胞和内细胞之间的拉锯战指挥着细胞群。这些结果揭示了集体细胞迁移的一般原理。
架构1。1/02/2023 Zibar Layla 16 2。6/02/2023 Bosmans Claire -Elisabeth 19 3. 6/02/2023 Espinosa Rojas Nelly Paulina 20 4。2/03/2023/2023 Gola Alsesandra 28 5。10/03/2023 li Yue 34 6. 20/0/0/20/7 AC Celikyay Iremnur 61 8。29/05/2023 Nguyen Minh Quang 65 9. 3/07/2023 Rahman Bobby 95 10。7/07/2023RöckMartin 99 11. 21/09/2023 Jinze 131 13. 10/10/2023 Miyamoto Ayu 135 14.23/10/2023 NGUYEN BINH VINH DUC 145 15.4/12/2023 BARBIER TOBIAS 177计算机科学16. 20/01/2023 Ahmar ul Haque 7 17。23/02/202 26 18/03 18/0 3. 03/2023 TOTIS PIETRO 33 20. 31/03/2023 KUMAR NITESH 46 21.31/05/2023 LE POCHAT VICTOR 67 22.5/06/2023 ALVARADO ORTEGA ORTEGA JUAN AURELIO 73 75 24. 7/06/2023 Gheibi Omid 76 25. 9/06/2023 Goyal Kshitij 79 26. 12/06/2023 Jooken Jorik 80 27. 19/06/2023 Verbruggen Gust 84 28. 20/06/2023 Yang Wen-Chi 85 29. 29/06/2023 Steel Thijs 93 30. 3/07/2023 Tran Duy Hoang 96 31. 29/08/2023 Jannes Kristof 107 32. 1/09/2023 Loevbak Emil Andre 108 33. 12/09/2023 Araujo Vasquez Vladimir Giovanny 114 34. 12/09/2023 VandeCasteele Hannes 11535。19/09/2023Van den Berg Birthe 121 36. 6/10/2023 Quin Federico 132 37. 9/10/2023 Baert Wouter 133 38.19/10/2023 Alderz 141 39.141 39。19/10/1023 OOGE Jeroge jeroge Jeroge jeroge jeroge jeroge jeroge jeroge jeroge jeroen 142 30/11/en 23 Van Hamme Tim 168 42.28/11/2023 DE WEER TOM 17243。5/12/2023WINTERS THOMAS 18144。7/12/2023DELOBELLE PIETER 184 45. 21/12/2023/2023 Derkinderen Vincent 196 化学工程 46. 10/01/2023 Dewes Ruben 3 47. 20/01/2023 Solmaz Serkan 8 48. 25/01/2023 Cerdan Gomez Kenneth - 49. 27/01/2023 Muhirirwe Cecilia Sandra 13 50. 27/02/2023 Lalanne-Tisne Michael 27
全世界有超过 5500 万人患有阿尔茨海默病 (AD),这是最常见的神经退行性疾病,而根据世界卫生组织的数据,预计到 2050 年这一数字将达到 1.39 亿例 (S. Report, 2021)。然而,AD 的病因及其临床前阶段,如轻度认知障碍 (MCI) 和主观认知衰退 (SCD),仍不清楚,也没有提出有效的治疗方法 (Petersen 等人,2001;Albert 等人,2011;Stewart,2012;Bessi 等人,2018;Yue 等人,2021),尽管早期发现这些病症具有重要的科学意义。每年,10% 到 15% 的 MCI 患者会发展为 AD,预计超过一半的 MCI 患者会在 5 年内发展为 AD(Gauthier 等人,2006 年;Tarnanas 等人,2015 年)。然而,由于危险性和副作用较低,一些非药物方法也被提出。另一方面,尽快发现认知功能下降以阻止认知功能障碍和 AD 的进展仍然是科学的重中之重。因此,脑电图 (EEG) 因其在识别早期认知能力下降方面的优势而得到广泛研究,它似乎是这方面的一种潜在方法,因为它提供了一种非侵入性且简单的工具,可早期检测整个 AD 谱系中的大脑活动异常(Lazarou 等人,2019a、2020 年)。脑电图 (EEG) 已被用作诊断 AD 的工具,并且已采用多种技术来检测 AD 患者的脑电图异常。在这个方向上,考虑到先前的研究通过探索大脑频率、ERP 或基于图论的大脑连接组更高级指标(Lazarou et al. 2019b, 2020)阐明了 EEG 的临床重要性,这可以提高我们对认知能力下降早期阶段人类大脑复杂组织的理解。关于脑电波,EEG相关研究表明,与正常老年受试者相比,认知障碍者在静息态活动期间,delta和theta功率增加,而alpha和beta活动功率则降低(Aftanas和Golocheikine,2001;Lal和Craig,2002;Aftanas和Golocheikine,2003;Lutz等,2008;Foxe和Snyder,2011;Wells等,2013;Snyder等,2015;Tsoneva等,2015;Deolindo等,2020;Bentley等,2022;Lazarou等,2022)。最近的科学数据表明,特定的EEG标记物与转化预后相关。这些标记是增加的 theta/gamma 比率,alpha 频率的降低,这似乎与转化为 AD 有关。此外,在 MCI 和 AD 受试者中,静息状态下的后 delta 和 alpha EEG 节律似乎对 AD 神经退行性过程更为敏感(Osterrieth,1944 年)。Babiloni 等人在他们的工作中提出了以下假设:在 MCI 和 AD 患者中,由于整个疾病的皮质萎缩,脑电图节律存在异常。他们的研究结果表明
标题 1 闭环颈部硬膜外刺激在自由活动大鼠脊髓损伤后诱发呼吸神经可塑性 2 3 缩写标题 4 硬膜外刺激诱发呼吸神经可塑性 5 6 作者姓名及所属机构 7 Ian G. Malone 1,2 , Mia N. Kelly 2,3 , Rachel L. Nosacka 4 , Marissa A. Nash 4 , Sijia Yue 5 , Wei Xue 5 , Kevin J. Otto 1,2,6,7,8,9,10 , 8 和 Erica A. Dale 2,4,6 9 1 佛罗里达大学电气与计算机工程系,佛罗里达州盖恩斯维尔 32611 10 2 佛罗里达大学呼吸研究与治疗中心,佛罗里达州盖恩斯维尔 32611 11 3 佛罗里达大学物理治疗系,佛罗里达州盖恩斯维尔 32611 12 4 佛罗里达大学生理学和功能基因组学系,佛罗里达州盖恩斯维尔 32611 13 5 佛罗里达大学生物统计学系,佛罗里达州盖恩斯维尔 32611 14 6 佛罗里达大学麦克奈特脑研究所,佛罗里达州盖恩斯维尔 32611 15 7 J. Crayton Pruitt Family 佛罗里达大学生物医学工程系,佛罗里达州盖恩斯维尔 32611 16 8 佛罗里达大学材料科学与工程系,佛罗里达州盖恩斯维尔 32611 17 9 佛罗里达大学神经病学系,佛罗里达州盖恩斯维尔 32611 18 10 佛罗里达大学神经科学系,佛罗里达州盖恩斯维尔 32611 19 20 通讯作者电子邮件地址 21 电子邮件:ericadale@ufl.edu 22 23 内容信息 24 图表数量:9 25表格数量:0 26 多媒体数量:0 27 字数:28 x 摘要:235 29 x 意义陈述:119 30 x 引言:660 31 x 讨论:2,003 32 33 致谢 34 作者要感谢佛罗里达大学 Dale 实验室、NeuroProstheses 研究实验室和 35 Mitchell 实验室的所有成员提供的技术指导。我们感谢 Raphael Perim 博士、Kaitlynn Olczak 博士和 Yasin Seven 博士提供的技术支持、帮助和指导;感谢 Larry Shupe 博士、Chet Moritz 博士和 Eberhard Fetz 博士提供的 Neurochip3 硬件并协助排除故障;最后,感谢 Jennifer Bizon 博士、Jada Lewis 博士、Peter Sayeski 博士、38 David Fuller 博士、Gordon Mitchell 博士、Charlie Wood 博士和 Stephen Sugrue 博士的支持和指导。 39 40 利益冲突 41 本稿件的作者声明他们没有利益冲突。 42 43 资金 44 这项工作得到了 Craig H. Neilsen 基金会、麦克奈特脑研究所和佛罗里达大学脑 45 和脊髓损伤研究信托基金、NIH T32 HL134621 呼吸研究和治疗培训计划、46 HL147554、NIH U01 NS099700 和佛罗里达大学学者计划的支持。 47 48
ZDENěKDVO营1‡*,Felix Kopp 2‡,Cait M. Costello 17,Jazmin S.Kemp 17,Hao Li 3‡,AnetaVrzalová1‡Martinaštěpánková1,IvetaBartoňková1 1,拉斯·U。 Beck 4,Sandhya Kortagere 11 *,Michelle C. Neary 12、Aneesh Chandran 13、Saraswathi Vishveshwara 13、Maria M. Cavalluzzi 14、Giovanni Lentini 14、Julia Yue Cui 15、Haiwei Gu 16、John C. March 17、Shirshendu Chaterjee 18、Adam Matson 19、Dennis Wright 20、Kyle L. Flannigan 21、Simon A. Hirota 21、R. Balfour Sartor 22、Sridhar Mani 3、* 1 来自帕拉茨基大学细胞生物学和遗传学系,奥洛穆茨 78371,捷克共和国;美国纽约州布朗克斯市阿尔伯特爱因斯坦医学院 2 生物化学系、3 医学、遗传学和分子药理学系及 4 病理学系,邮编 10461; 5 辛辛那提儿童医院医疗中心,俄亥俄州辛辛那提 45229; 6 宾夕法尼亚州立大学农业科学学院兽医与生物医学科学系,宾夕法尼亚州立大学公园,16802,美国; 7 斯洛伐克科学院 BMC 实验内分泌研究所,Dúbravská cesta 9, 845 05 布拉迪斯拉发,斯洛伐克共和国; 8 约翰霍普金斯大学生物系,马里兰州巴尔的摩 21218,美国; 9 北卡罗来纳大学化学系,北卡罗来纳州教堂山 27599; 10 纽约大学医学院病理学系,纽约,NY 10016; 11 美国德雷塞尔大学医学院微生物学和免疫学系,宾夕法尼亚州费城 19129; 12 纽约城市大学亨特学院化学系,纽约 NY 10065; 13 印度科学研究所分子生物物理学部,班加罗尔 560012,印度; 14 巴里阿尔多莫罗大学药学系 - 药学科学,意大利巴里 70125; 15 华盛顿大学环境与职业健康科学系,华盛顿州西雅图 98105; 16 亚利桑那州立大学健康解决方案学院代谢和血管生物学中心,亚利桑那州斯科茨代尔 85259; 17 康奈尔大学生物与环境工程系,纽约州伊萨卡 14853; 18 纽约市立大学城市学院数学系,纽约州,纽约州 10031; 19 康涅狄格大学儿科和免疫学系,康涅狄格州法明顿 06030; 20 康涅狄格大学药学系,康涅狄格州斯托尔斯 06269-3092; 21 卡尔加里大学生理学和药理学系,加拿大阿尔伯塔省卡尔加里 T2N 4N1; 22 胃肠生物学和疾病中心、医学部、胃肠病学和肝病学分部、北卡罗来纳大学教堂山分校,北卡罗来纳州教堂山 27599,美国 $ 现住址:圣埃德蒙学院,西隆,Old Jowai Road,西隆,梅加拉亚邦 793003,印度
最重要的是,我要向我的导师 Clive D'Souza 博士表示最深切的谢意,感谢他一路以来的建议、支持和耐心。如果没有他的支持,这项工作就不可能完成。他的卓越和对研究的热情帮助我培养了对研究的兴趣,并让我决定从事人体工程学研究。最重要的是,他一直相信我和我作为研究人员的潜力,这激励我在困难时期也能专注于研究。我还要感谢我的论文委员会成员 Thomas Armstrong 博士、Judy Jin 博士和 Albert Shih 博士在整个过程中对我的支持,以及提供他们的时间、专业知识和建设性反馈来改进这篇论文。我还要感谢 Bernard Martin 博士、Sheryl Ulin 博士、Nadine Sarter 博士和 Paul Green 博士的指导和支持。我还要感谢工业与运营工程系 (IOE) 和人体工程学中心的优秀员工和管理人员。我感谢 Eyvind Claxton、Charles Wolley、Christopher Konrad、Olof (Mint) Minto 和 Rodney Capps 在我的研究项目各个阶段提供的慷慨技术援助,还要感谢 Teresa Maldonado 的慷慨支持。我要感谢在我研究生学习期间一直支持我的朋友和同事。首先,我的午餐伙伴 Justin Haney 博士,感谢他过去四年来一直坚持陪伴我。我很自豪我们能够同时顺利完成学业。我还要感谢人体工程学中心大家庭 - 刘柯博士、万玉芝博士、罗岳、Yadrianna Acosta-Sojo、陆一都、Albert Fu、杜娜、Kevin Lieberman、李一帆、Kamolnat Tabattanon 和我所有的学生 - 感谢他们的支持和鼓励。这项工作由美国国家职业安全与健康研究所、疾病控制与预防中心(培训拨款 T42-OH008455)和美国国家残疾、独立生活与康复研究所(拨款 90IF0094-01-00)以及 Rackham 研究生研究拨款资助。最后,也是我最想感谢的,我要感谢我的父母和家人对我无条件的爱和支持。与我的小爱人 Jason Lee 一起完成我的论文有点困难。在父母和丈夫 Sang Won Lee 的帮助下,我能够在整个过程中保持微笑。我特别感谢 Sang,他一直是我最好的朋友和导师。
这项工作得到了国家重点研发计划(2018YFB1801101)、国家自然科学基金(61960206006)、江苏省科技攻关计划(工业前瞻性与关键技术)BE2022067 和 BE2022067-1、欧盟 H2020 RISE TESTBED2 项目(872172)、欧盟 H2020 ARIADNE 项目(871464)、欧盟 H2020 RISE-6G 项目(101017011)以及美国国家科学基金会(CCF-1908308 和 CNS-2128448)的支持。同时还要感谢毛希晨、卜英兰、季文协、周子豪、杨越、辛利建、常恒泰和黄多贤,他们对本研究提供了宝贵的帮助和建议。C.-X. Wang(通讯作者)、XH You(通讯作者)、XQ Gao、XM Zhu、ZX Li、C. Zhang 和 YM Huang 都来自东南大学信息科学与工程学院国家移动通信研究实验室,南京 210096,中国,以及紫金山实验室,南京 211111,中国(电子邮箱:{ chxwang, xhyu, xqgao, xm zhu, lizixin, chzhang, huangym } @seu.edu.cn)。 HM Wang 就职于东南大学信息科学与工程学院和毫米波国家重点实验室,南京 210096,中国,同时也就职于紫金山实验室普适通信研究中心,南京 211111,中国(电子邮件:hmwang@seu.edu.cn)。YF Chen 就职于英国华威大学工程学院,考文垂 CV4 7AL,英国(电子邮件:yunfei.chen@warwick.ac.uk)。H. Haas 就职于英国思克莱德大学电子电气工程系 LiFi 研究与开发中心,格拉斯哥 G1 1XQ,英国(电子邮件:harald.haas@strath.ac.uk)。JS Thompson 就职于英国爱丁堡大学工程学院数字通信研究所,爱丁堡 EH9 3JL,英国(电子邮件:john.thompson@ed.ac.uk)。 EG Larsson 就职于瑞典林雪平大学电气工程系 (ISY),邮编 581 83 Linkoping,电子邮箱:erik.g.larsson@liu.se。M. Di Renzo 就职于巴黎萨克雷大学、法国国家科学研究院、中央理工学院、信号与系统实验室,邮编 3 Rue Joliot-Curie,邮编 91192 Gif-sur-Yvette,法国。(marco.di-renzo@universite-paris-saclay.fr) W. Tong 就职于加拿大华为技术有限公司无线先进系统与能力中心,邮编 渥太华,邮编 ON K2K 3J1,加拿大。(电子邮件:tongwen@huawei.com)。 PY Zhu 就职于华为技术加拿大有限公司,加拿大安大略省渥太华 K2K 3J1(电子邮件:peiying.zhu@huawei.com)。X. Shen 就职于滑铁卢大学电气与计算机工程系,加拿大安大略省滑铁卢 N2L 3G1(电子邮件:sshen@uwaterloo.ca)。HV Poor 就职于普林斯顿大学电气与计算机工程系,美国新泽西州普林斯顿 08544(电子邮件:poor@princeton.edu)。L. Hanzo 就职于电子与计算机科学学院,南安普顿大学,南安普顿 SO17 1BJ,英国(电子邮件:lh@ecs.soton.ac.uk)
ICLR 2025交织的场景图,用于交织的文本和图像生成评估。Dongping Chen,Ruoxi Chen,Shu Pu,Zhaoyi Liu,Yanru Wu,Caixi Chen,Caixi Chen,Benlin Liu,Yue Huang,Yao Wan,Pan Zhou,Ranjay Krishna International International In In Machine Learning,Machine Learning,2025 ICLR 2025 ICLR 2025 AHA:一个视觉语言的人,以实现失败的竞争,并合理地覆盖了竞争者,并合理地覆盖了杂物。众包工作流的技术。Madeleine Grunde-McLaughlin,Michelle S. Lam,Ranjay Krishna,Daniel S. Weld,Je Q rey Heer Heer ACM ACM Transactions on Computer-Human互动Neurips Neurips Neurips 2024 Dist Me Night Me。Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi, Aniruddha Kembhavi, Ranjay Krishna Advances in neural information processing systems, 2024 NeurIPS 2024 Visual Sketchpad: Sketching as a Visual Chain of Thought for Multimodal Language Models .Yushi Hu*,Weijia Shi*,Xingyu Fu,Dan Roth,Mari Ostendorf,Luke Zettlemoyer,Noah A Smith*,Ranjay Krishna*神经信息处理系统的进步,2024年Neurips 2024 Neurips 2024多语言多样性多样性多样性的多样性改善视觉语言表现。Thao Nguyen, Matthew Wallingford, Sebastin Santy, Wei-Chiu Ma, Sewoong Oh, Ludwig Schmidt, Pang Wei Koh, Ranjay Krishna* Advances in neural information processing systems, 2024 Spotlight Paper award (awarded to top 5%) NeurIPS 2024 The Unmet Promise of Synthetic Training Images: Using Retrieved Real Images Per- forms Better .Scott Geng,Cheng-Yu Hsieh,Vivek Ramanujan,Matthew Wallingford,Chun-Liang Li,Pang Wei Koh*,Ranjay Krishna*神经信息处理系统的进步,2024 Neurips,Neurips 2024 2024 ActionAtlas:Actionatlas:a Videoqa-benchmark for Videoqa Benchmark for-Frain grave grave grave vrained Capention conterition。Mohammadreza Salehi, Jae Sung Park, Aditya Kusupati, Ranjay Krishna , Yejin Choi, Hannaneh Hajishirzi, Ali Farhadi Advances in neural information processing systems, 2024 NeurIPS 2024 NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples .Wenxuan Peng,Baiqi Li,Zhiqiu Lin,Jean de Dieu Nyandwi,Zixian MA,Simran Khanuja,Deva Ramanan,Ranjay Krishna,Graham Neubig在神经信息处理系统中的进步,2024 Neurips 2024 Neurips 2024 Neurips 2024 Superpuse Supperections singleferess singleferess inderfection in Deciatsions nicledere nitferations in Deciatsions niclederiate bulyse nitferiations in Deciatsions anderfelions in Deciatsions:多个世代。Ethan Shen,Alan Fan,Sarah M Pratt,Jae Sung Park,Matthew Wallingford,Sham M Kakade,Ari Holtzman,Ari Holtzman,Ranjay Krishna,Ali Farhadi,Aditya Kusupati在神经信息处理系统中的进步,2024
时间倒转对称性的kagome超导性作者:汉宾·邓(Hanbin Deng)1 *,朱wei liu 1 *,Z。Guguchia2 *,Tianyu Yang 1 *,Jinjin liu 3,4 * Frédéric Bourdarot 9 , Xiao-Yu Yan 1 , Hailang Qin 7 , C. Mielke III 2 , R. Khasanov 2 , H. Luetkens 2 , Xianxin Wu 10 , Guoqing Chang 6 , Jianpeng Liu 11 , Morten Holm Christensen 12 , Andreas Kreisel 12 , Brian Møller Andersen 12 , Wen Huang 13 , Yue Zhao 1 ,Philippe Bourges 8,Yugui Yao 3,4,Pengcheng Dai 5,Jia-Xin Yin 1,7†隶属关系:1 Southern科学技术大学物理系,中国广东,深圳。2个宇宙旋转光谱实验室,保罗·施雷尔学院(CH-5232),瑞士维利根PSI。3量子物理中心,高级光电量子体系结构和测量(MOE)的主要实验室(MOE),北京理工学院,中国北京理工学院物理学院。4北京纳米植物和超细光电系统的北京关键实验室,中国北京理工学院。5美国休斯敦莱斯大学物理与天文学系77005,美国。6物理学和应用物理学,新加坡Nanyang Technological University的物理和数学科学学院,新加坡637371。7广东港量子科学中心大湾大湾地区(广东),中国深圳。8帕里斯 - 萨克莱大学,CNRS-CEA,LaboratoireLéonBrillouin,91191,法国Gif Sur Yvette,法国。9UniversitéGrenoble Alpes,CEA,INAC,MEM MDN,F-38000 Grenoble,法国。*这些作者为这项工作做出了同样的贡献。10理论物理学的CAS关键实验室,理论物理研究所,中国科学院,中国北京。11上海大学物理科学技术学院,上海2011年,中国。12尼尔斯·博尔研究所,哥本哈根大学,丹麦哥本哈根DK-2200。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。 †相应的作者。 电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。†相应的作者。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。
Nansu Zong 是梅奥诊所人工智能和信息学研究系的助理教授。他致力于基于知识库和深度学习算法的计算药物开发。Ning Li 是美国国立卫生研究院国家癌症研究所结构生物学中心 (CSB) 的研究员。他从事蛋白激酶 A 的结构和功能研究,涉及 X 射线晶体学和低温电子显微镜的方法。Andrew Wen 是梅奥诊所的生物信息学家。他有兴趣利用信息学工具在医疗保健领域构建各种应用程序。他是自然语言处理 (NLP) 专家。Victoria Ngo 是 VA Palo Alto 医疗系统和斯坦福健康政策的博士后研究员。Ngo 是一名健康信息学家,她的研究重点是健康公平和信息技术的优化,以改善社区护理的提供和协调。Yue Yu 是梅奥诊所的生物信息学家,主要从事医疗数据标准化领域的工作。Yu 还对使用人工智能方法解决生物医学问题感兴趣。 Ming Huang 是梅奥诊所人工智能与信息学系的助理教授。他是主题建模和深度学习方面的专家。Shaika Chowdhury 是梅奥诊所人工智能与信息学系的研究员,研究基于深度学习的精准医疗。Chowdhury 对利用知识图谱来提高深度学习模型的性能很感兴趣。Chao Jiang 是奥本大学的博士生。他研究各种深度学习模型,尤其专注于图神经网络。Sunyang Fu 是梅奥诊所的高级数据科学分析师和生物医学信息学研究员。他的研究重点是 (i) 设计和验证用于临床信息提取的 NLP 技术,(ii) 开发信息学框架和流程以加速电子健康记录 (EHR) 在临床研究中的二次使用,以及 (iii) 通过定量和定性方法发现 EHR 异质性和信息质量。Richard Weinshilboum 是梅奥诊所分子药理学和实验治疗学系的教授。他研究药物基因组学——遗传和个体差异在 DNA 序列或结构中对药物反应的作用。Guoqian Jiang 是梅奥诊所人工智能和信息学研究系的教授。他研究生物医学术语和本体、数据标准、通用数据元素和临床研究的通用数据模型。Lawrence Hunter 是科罗拉多大学的药理学和计算机科学教授。他专注于知识驱动的从原始生物医学文献中提取信息、分子生物学中知识资源的语义集成以及知识在高通量数据分析中的应用。刘红芳是梅奥诊所人工智能和信息学研究系的教授。刘红芳的主要研究重点是利用数据科学、人工智能和信息学方法促进临床数据的二次利用,以用于临床和转化科学研究以及医疗服务改进。梅奥诊所是一家慈善、非营利的学术医疗中心,提供全面的患者护理和临床医学和医学科学教育以及广泛的研究项目。梅奥诊所包括梅奥医学院、梅奥研究生院、梅奥研究生医学教育学院、梅奥持续专业发展学院和梅奥健康科学学院。收稿日期:2022 年 1 月 14 日。修订日期:2022 年 4 月 10 日。接受日期:2022 年 4 月 29 日 © 作者 2022。牛津大学出版社出版。这是一篇根据 Creative Commons 署名-非商业许可条款发布的开放获取文章 ( http://creativecommons.org/licenses/ by-nc/4.0/ ),允许在任何媒体上进行非商业性再利用、发布和复制,但必须正确引用原作。如需进行商业性再利用,请联系 journals.permissions@oup.com
