1。Lee J. †,Cooley D.,Wagner A.M.,Liston G.E. (2024+)通过参数的线性映射来投射未来的校准方法。 被接受的环境和生态统计。 2024年10月25日。 2。 Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。 时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。 3。 Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。 应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。 4。 Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。 应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。 5。 Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Lee J.†,Cooley D.,Wagner A.M.,Liston G.E.(2024+)通过参数的线性映射来投射未来的校准方法。被接受的环境和生态统计。2024年10月25日。2。Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。3。Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。4。Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。5。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。6。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R.(2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。7。修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。环境,32:e2656。https://doi.org/10.1002/env.2656 8。 Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。 保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。 江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。https://doi.org/10.1002/env.2656 8。Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。江Y.,Cooley D.,Wehner M.P.(2020)主要成分分析,用于极端和对美国降水的应用。气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。Cooley D.,Thibaud E.(2019)。对高维度的依赖性分解。Biometrika,106:587-604。doi:10.1093/biomet/asz028。11。Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Hewitt J.†,Fix M.J.†,Hoeting J.A.,Cooley D.S.(2019)。通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。jabes; 24:426-443。doi:10.1007/s13253-019-00356-4 12。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。jabes; 24:484-501。doi:10.1007/s13253-019-00356-4 13。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F.(2019)。一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。14。Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。网格降水数据集中极端的一致性。气候动力学,52:6651-6670。doi:10.1007/s00382-018-4537-0。15。修复M.†,Cooley D.,Sain S.R.,Tebaldi C.(2018)。在RCP8.5和RCP4.5下,美国降水极端的比较与模式缩放的应用。气候变化,146(3),335-347。doi:10.1007/s10584-016-1656-7。
[4] Abeba Birhane、William Isaac、Vinodkumar Prabhakaran、Mark Diaz、Madeleine Clare Elish、Iason Gabriel 和 Shakir Mohammed。 2022.权力归人民?参与式人工智能的机遇与挑战。算法、机制和优化中的公平与访问(美国弗吉尼亚州阿灵顿)(EAAMO '22)。美国计算机协会,纽约,纽约州,美国,第 6 篇文章,8 页。 https://doi.org/10.1145/3551624.3555290 [5] Rishi Bommasani、Drew A. Hudson、Ehsan Adeli、Russ Altman、Simran Arora、Sydney von Arx、Michael S. Bernstein、Jeannette Bohg、Anthony Bosselut 等人。 2021. 论基础模式的机遇与风险。 arXiv 预印本 arXiv:2108.07258(2021)。 https://crfm.stanford.edu/assets/report.pdf [6] Zalan Borsos、Raphael Marinier、Damien Vincent、Eugene Kharitonov、Oliver Pietquin、Matt Sharifi、Oliver Teboul、David Grangier、Marco Tagliasacchi 和 Neil Zeghidour。 2022.AudioLM:一种用于音频生成的语言建模方法。 arXiv:2209.03143 [cs.SD] [7] 马修·伯特尔 (Matthew Burtell) 和托马斯·伍德赛德 (Thomas Woodside)。 2023.人工智能影响力:人工智能驱动的说服分析。 http://arxiv.org/abs/2303.08721 arXiv:2303.08721 [cs]。 [8] C2PA。 2024. 引入官方内容凭证图标 - C2PA — c2pa.org。 https://c2pa.org/post/contentcredentials/。 [访问日期:2024 年 1 月 17 日]。 [9] 维多利亚·克拉克、弗吉尼亚·布劳恩和尼基·海菲尔德。 2015.主题分析。定性心理学:研究方法实用指南 222,2015 (2015),248。[10] Joshua Cloudy、Jaime Banks、Nicholas David Bowman。 2023. The Str(AI)ght Scoop:人工智能线索减少对敌对媒体偏见的看法。数字新闻 11,9(2023 年 10 月),1577–1596。 https://doi.org/10.1080/21670811.2021.1969974 [11] 谷歌DeepMind。 2024.合成器ID。 https://deepmind.google/technologies/synthid/。访问日期:2024-1-1 [12] Upol Ehsan 和 Mark O. Riedl。 2020.以人为本的可解释人工智能:走向反思性社会技术方法。在 HCI International 2020 - 最新论文:多模态性和智能中,Constantine Stephanidis、Masaaki Kurosu、Helmut Degen 和 Lauren Reinerman-Jones(编辑)。 Springer International Publishing,Cham,449-466。 [13] Passant Elagroudy、Jie Li、Kaisa Vanänen、Paul Lukowicz、Hiroshi Ishii、Wendy Mackay、Elizabeth Churchill、Anicia Peters、Antti Oulasvirta、Rui Prada、Alexandra Diening、Giulia Barbareschi、Agnes Gruenerbl、Midori Kawaguchi、Abdallah El Ali、Fiona Draxler、Robin Welsch 和 Albrecht dt。 2024 年 CHI 计算机系统人为因素会议(美国夏威夷檀香山)(CHI '24 EA)的扩展摘要 https://doi.org/10.31234/osf.io/v4mfz [14] Ziv Epstein、Mengying C Fang、Antonio A Arechar 和 David G Rand。1996。价值敏感设计。互动 3、6(1996 年 12 月)、16–23。 https://doi.org/10.1145/242485.242493 [16] Ozlem Ozmen Garibay、Brent Winslow、Salvatore Andolina、Margherita Antona、Anja Bodenschatz、Constantinos Coursaris、Gregory Falco、Stephen M. Fiore、Ivan Garibay、Keri Grieman、John C. Havens、Marina Jirotka、 Hernisa Kacorri、Waldemar Karwowski、Joe Kider、Joseph Konstan、Sean Koon、Monica Lopez-Gonzalez、Iliana Maifeld-Carucci、Sean McGregor、Gavriel Salvendy、Ben Shneiderman、Constantine Stephanidis、Christina Strobel、Carolyn Ten Holter 和 Wei Xu。 2023. 以人为本的六大人工智能挑战。国际人机交互杂志 39,3 (2023),391–437。https://doi.org/10.1080/10447318.2022.2153320 arXiv:https://doi.org/10.1080/10447318.2022.2153320 [17] Colin M. Gray、Cristiana Santos、Nataliia Bielova、Michael Toth 和 Damian Clifford。2021. 黑暗模式和同意横幅的法律要求:互动批评视角。在 Proc. CHI '21 中。ACM,日本横滨,1-18。 https://doi.org/10.1145/3411764.3445779 [18] Matthew Groh、Aruna Sankaranarayanan、Nikhil Singh、Dong Young Kim、Andrew Lippman 和 Rosalind Picard。2023 年。人类对文字记录、音频和视频中的政治言论 Deepfakes 的检测。arXiv:2202.12883 [cs.HC] [19] Philipp Hacker、Andreas Engel 和 Marco Mauer。2023 年。监管 ChatGPT 和其他大型生成式 AI 模型。在 2023 年 ACM 公平、问责和透明度会议论文集(美国伊利诺伊州芝加哥)(FAccT '23)中。计算机协会,美国纽约州纽约,1112-1123。 https://doi.org/10.1145/3593013.3594067 [20] Geoff Hart。1996 年。“五个 W”:受众分析新任务的旧工具。技术交流 43,2(1996 年),139-145。http://www.jstor.org/stable/43088033 [21] Natali Helberger 和 Nicholas Diakopoulos。2023 年。ChatGPT 和 AI 法案。Internet Pol. Rev. 12,1(2023 年 2 月)。[22] Jonathan Ho、William Chan、Chitwan Saharia、Jay Whang、Ruiqi Gao、Alexey Gritsenko、Diederik P Kingma、Ben Poole、Mohammad Norouzi、David J Fleet 等人。2022 年。Imagen 视频:使用扩散模型生成高清视频。 arXiv:2210.02303 [cs.CV] [23] Mohammad Hosseini、David B Resnik 和 Kristi Holmes。2023 年。在撰写学术手稿时披露使用人工智能工具的伦理问题。研究伦理 19,4 (2023),449–465。https://doi.org/10.1177/17470161231180449 arXiv:https://doi.org/10.1177/17470161231180449 [24] Nanna Inie、Jeanette Falk 和 Steve Tanimoto。2023 年。设计参与式人工智能:创意专业人士对生成式人工智能的担忧和期望。在 2023 年 CHI 计算系统人为因素会议的扩展摘要中。1–8。 [25] Chenyan Jia、Alexander Boltz、Angie Zhang、Anqing Chen 和 Min Kyung Lee。2022 年。理解算法标签与社区标签对超党派错误信息感知准确性的影响。Proc. ACM Hum.-Comput. Interact。6,CSCW2,第 371 条(2022 年 11 月),27 页。https://doi.org/10.1145/3555096 [26] 贾长江、蔡岩、余元德和谢天浩。2016 年。5W+1H 模式:系统映射研究视角及云软件测试案例研究。系统与软件杂志 116(2016 年),206-219。https://doi.org/10.1016/j.jss.2015.01.058 [27] Michael H. Kernis 和 Brian M. Goldman。2006 年。真实性的多组分概念化:理论与研究。实验社会心理学进展。第 38 卷。爱思唯尔,283-357。 https://doi.org/10.1016/S0065-2601(06)38006-9