b'“ ctusbudu 5ijttuvezfyqmpsfuifbqmjdbujpopofofujdbmhpsppsppsppsjuintjohf 4cpypyftgpstgpstgpstgpstgpstgpstgpstgpstznfusdlffusdlfzdlfzdszquqiqiqiqiq f q q qusfqsftfoupopopopfoupopfoupopfoupopfouppfmjn bmhpsji) 4QFDUSVN 8)4 DPTU GVTUJPO OPOMJUZPG0VSBQSBQSPDIBDIBDIBDIBDJFSGPSNBODFQBSNBODFQBSJUZXJUBWFFSBHFSBHFPGJUFPGJUFPGJUFUIBTXJUIBTXJUIBTXJUIBTVDFFTSBEBFUFF5FBUFFBUFFBUFFBUFFBUFFBFFMJNDFMJNDF.FFMJNDFMJDFMJDFMJDFMJDFMJDFMJDFMJNDFMJDFMJDFMJDFMJND bmhpsjuin jnqmfubujpot jo uijt gjfme nbhovef#z bdijfwjoh frvjwbmfoffofsgpsnbodf uispvhi uispvhi b ejgg fyqboot uif upmlju dszqquhsbqjdqsjnjnjwfhfofsbujpo5ifbqubcjmjuzboeqbsbm qfstqfujwft po pqu dpnnvojdbujpotztufnt'
摘要:2型糖尿病(T2D)的复杂发展为研究动物模型中疾病的进展和治疗带来了挑战。新开发的糖尿病大鼠模型,Zucker糖尿病Sprague Dawley(ZDSD)大鼠,与人类T2D的进展紧密相似。在这里,我们检查了雄性ZDSD大鼠T2D和肠道菌群中相关的变化的进展,并测试该模型是否可用于检查潜在疗法的效率,例如益生元,特定寡寡素化的,靶向了gut microbobiota。体重,肥胖,喂养/空腹血糖和胰岛素。葡萄糖和胰岛素耐受性测试,并使用16S rRNA基因测序在8、16和24周龄进行短链脂肪酸和微生物群分析时收集的粪便。在24周结束时,一半的大鼠补充了10%的寡果糖,并重复测试。我们观察到通过恶化的胰岛素和葡萄糖耐受性,从健康/非糖尿病患者到糖尿病前期和公开糖尿病态的过渡,进食/禁食葡萄糖的显着增加,然后显着减少循环胰岛素。与健康和糖尿病前期相比,在公开糖尿病状态下,乙酸和丙酸酯水平显着增加。微生物群分析表明,与糖尿病前和糖尿病态相比,健康型和β多样性的变化以及健康属的变化以及特定细菌属的变化发生了变化。寡聚果糖治疗改善了葡萄糖耐受性,并在晚期糖尿病期间改变了ZDSD大鼠的盲肠菌群。这些发现强调了ZDSD大鼠作为T2D模型的转化潜力,并突出了可能影响疾病发展或作为T2D的生物标志物的潜在肠道细菌。此外,寡果糖处理能够中度改善葡萄糖稳态。
2型糖尿病(T2DM)与骨骼质量无关的骨折风险增加有关。这种增加的骨折风险的确切起源仍未得到充分理解。使用多基因糖尿病大鼠模型,同步辐射微型计算层析成像(SR µ CT)以及原位扫描电子显微镜(SEM)断裂韧性,我们将显微镜的变化与糖尿病比股骨的韧性和材料特性相关联。糖尿病大鼠模型(ZDSD)显示出隔夜禁食高血糖和增加年龄的含量。此外,我们测量了糖尿病大鼠中产物后特性和韧性的损害。在该ZDSD模型中也影响了皮质几何形状和孔隙率。我们测量了与lacunar体积减少相关的骨细胞lacunar密度的降低。此外,我们发现运河密度降低,同时保持类似的管直径。这些结果表明糖尿病会损害骨骼重塑,从而影响骨骼微观。由于运河和空隙也与外在的韧性机制有关,因此我们将韧性下降归因于这些微观结构的变化。总而言之,我们表明lacunae和运河密度的变化以及年龄的积累,降低了T2DM大鼠骨的韧性。