2在能源材料中表征运输现象的方法部,helmholtz-Zentrum柏林材料和Energie GmbH,Hahn-Meitner-Platz 1,14109柏林,德国柏林3席3席部薄膜设备的椅子技术,高效率和半教导机构技术研究所10587柏林,德国4部门能源材料的部门结构和动力学,赫尔姆霍尔茨 - 泽特鲁姆柏林材料和能源GMBH,Hahn-Meitner-Platz 1,14109柏林,德国5号,柏林5柏林5物理与天文学研究所柏林技术大学物理学,Hardenbergstraße,36,10623柏林,德国7 PVCOMB,Helmholtz-Zentrum柏林柏林材料和能量GmbH,Schwarzschildstraße3,12489 Berlin,
ISO avones是由豆类产生的一类二级代谢产物,在人类健康和植物胁迫耐受性中起重要作用。 C2H2锌 - 纤维转录因子(TF)在植物胁迫耐受性中的功能,但对其在大豆(Glycine Max)中的异含量反应中的功能知之甚少。 在这里,我们报告了一个C2H2锌 - 纤维TF基因GMZFP7,该基因调节大豆中的Iso avone积累。 过表达的GMZFP7增加了跨基因根和植物中的ISO avone浓度。 相比之下,沉默的GMZFP7表达显着降低了同avone水平。 代谢组和QRT-PCR分析表明,GMZFP7可以增加苯基丙烷途径的频率。 此外,双 - 荧光酶和电泳动物移动分析测定法表明,GMZFP7通过侵入ISO纤维抗酮合酶2(GMIFS2)(GMIFS2)和3 B-氟酮3 B-羟基酶1(gmff3h1)来调节ISO avone的积累。 在这项研究中,我们证明了GMZFP7通过对竞争性苯基丙烷途径分支的Gateway酶(GMIFS2和GMF3H1)的表达来表达来导致ISO弹药积累,以将代谢流将代谢流引导到ISOOFONE中。 单倍型分析表明,GMZFP7启动子中存在重要的自然变化,P-HAP1和P-HAP3是精英单倍型。 我们的发现提供了有关GMZFP7如何调节苯基丙烷途径并增强大豆ISO avone含量的洞察力。ISO avones是由豆类产生的一类二级代谢产物,在人类健康和植物胁迫耐受性中起重要作用。C2H2锌 - 纤维转录因子(TF)在植物胁迫耐受性中的功能,但对其在大豆(Glycine Max)中的异含量反应中的功能知之甚少。在这里,我们报告了一个C2H2锌 - 纤维TF基因GMZFP7,该基因调节大豆中的Iso avone积累。过表达的GMZFP7增加了跨基因根和植物中的ISO avone浓度。相比之下,沉默的GMZFP7表达显着降低了同avone水平。代谢组和QRT-PCR分析表明,GMZFP7可以增加苯基丙烷途径的频率。此外,双 - 荧光酶和电泳动物移动分析测定法表明,GMZFP7通过侵入ISO纤维抗酮合酶2(GMIFS2)(GMIFS2)和3 B-氟酮3 B-羟基酶1(gmff3h1)来调节ISO avone的积累。在这项研究中,我们证明了GMZFP7通过对竞争性苯基丙烷途径分支的Gateway酶(GMIFS2和GMF3H1)的表达来表达来导致ISO弹药积累,以将代谢流将代谢流引导到ISOOFONE中。单倍型分析表明,GMZFP7启动子中存在重要的自然变化,P-HAP1和P-HAP3是精英单倍型。我们的发现提供了有关GMZFP7如何调节苯基丙烷途径并增强大豆ISO avone含量的洞察力。
我们证明了具有Wurtzite结构的MG取代的ZnO薄膜中的铁电性。Zn 1-x mg x o膜通过(111)-PT //(0001)-AL 2 O 3基板在温度下为26至200°C的组合物上的(111)-PT //(0001)-AL 2 O 3底物生长,用于从x = 0到x = 0.37。X射线衍射表示C -Lattice参数的减少,并且在此组合范围内,A -Lattice参数的增加,MG含量增加,导致C/A轴向比为1.595。透射电子显微镜研究表明Zn 1 -x mg X O膜与PT电极之间的突然接口。在P O 2 = 0.025处制备时,通过原子力显微镜测量的Mg浓度> 29%,膜表面被异常定向的晶粒填充。提高P O 2至0.25消除了不良的晶粒。光学测量结果显示,随着MG含量的增加,带隙值的增加。在200°C的亚晶地上制备时,膜显示出超过100μccm-2的远程极化,当Mg含量约为30%至〜37%时,较不超过100μccm-2且胁迫场。底物温度可以降低到环境条件下,当这样做时,电容器堆栈仅显示出较小的牺牲,而对晶体取向和几乎相同的remanent极化值。但是,强制场降至2 mV/cm以下。使用环境温度沉积,我们证明了直接与聚合物亚电体表面集成的铁电容堆栈。
摘要 背景与目的:本研究利用锌指核酸酶(ZFN)技术破坏霍乱毒素基因(ctxA),抑制霍乱弧菌(V. cholera)产生CT毒素。实验方法:设计一个工程化的ZFN,靶向ctxA基因的催化位点,将ZFN编码序列克隆到pKD46、pTZ57R T/A载体和E2-crimson质粒中,转化大肠杆菌(E. coli)Top10和霍乱弧菌,通过菌落计数法评估ZFN的转化效果。结果:转化后的大肠杆菌经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和蛋白质印迹实验未见表达,ctxA基因测序未见突变,pKD46-ZFN质粒聚合酶链式反应结果为阴性。用含有完整 ZFN 序列的 T/A 载体转化大肠杆菌 Top10 产生 7 个菌落,所有菌落均含有具有自连接载体的细菌。用左阵列 ZFN 转化产生 24 个菌落,其中 6 个含有具有自连接载体的细菌,18 个含有具有载体/左阵列的细菌。用含有完整 ZFN 的 E2-深红色载体转化霍乱弧菌未产生任何菌落。用左阵列载体转化产生 17 个含有具有载体/左阵列的细菌的菌落。使用蛋白质印迹分析捕获左阵列蛋白带。结论和意义:由于缺乏非同源末端连接 (NHEJ) 机制,ZFN 可能脱靶细菌基因组,从而导致致命的双链 DNA 断裂。建议开发针对细菌基因的 ZFN,具有 NHEJ 修复系统的工程包装宿主是必不可少的。关键词:ctxA 基因;基因编辑工具;霍乱弧菌;锌指核酸酶。
CVD Ceramics 的化学气相沉积 CVD 硫化锌 ® 是红外窗口、圆顶和光学元件的低成本替代品。硫化锌的断裂强度是硒化锌的两倍,而且硬度高,已成功用于许多需要机械抗恶劣环境的军事应用。Cleartran ® 是一种 CVD 硫化锌 ® 材料,通过后沉积热等静压工艺进行改性。该工艺从晶格中去除氢化锌,使晶体结构正常化并净化材料,所有这些都有助于在可见光至远红外范围(0.35 -14 微米)内实现单晶般的透射率。由于其在宽传输范围内的低吸收和散射以及高光学质量,它特别适合需要单个孔径用于多个波段光束路径的多光谱应用。 CVD Zinc Sulfide ® 和 Cleartran ® 具有化学惰性、不吸湿、高纯度、理论上致密且易于加工。可根据您的规格定制直径、矩形、CNC 异形毛坯、生成的镜片毛坯、棱镜和近净形圆顶。
抽象的磷酸锌碱基腐蚀抑制剂,旨在确定抑制剂为碳钢提供保护的有效性,以防止腐蚀速率,在0、20、40和60 ppmm的抑制剂浓度方面的变化,这项研究使用了重量损失方法,并研究了通过培养基水和磷酸盐磷酸盐抑制剂的性能,并研究了水,水和pd的水平,并在水中进行水,并在水中进行水,seal sealisting sealisting水,pdam sealisting seal,pdam sealistor seal,pdam的水,pdam sealistor sc.电子显微镜)测试。该研究中使用的钢试样类型是碳钢,深腐蚀介质是冷却水,海水和PDAM水。添加磷酸锌碱基碳钢抑制剂有效地降低了PDAM水和海水中碳钢的腐蚀速率。在没有抑制剂的海水培养基中,从119.0457 MPY到1.7754 MPY和没有抑制剂的PDAM水培养基中,腐蚀速率的急剧降低,从18.5873 MPY到3.4163 MPY添加了抑制剂,腐蚀速率急剧降低。磷酸锌基抑制剂在冷却水腐蚀培养基中的效率为30.262%,浓度为40 ppm,浸泡时间为20天。关键字:抑制效率,腐蚀抑制剂,海水腐蚀,
生态环境的迫在眉睫的危机降解和以化石燃料为主的不可再生能源的消耗促进了全球清洁新能源技术的繁荣发展,例如太阳能,风能,水能和全球生物量。1 - 3,对储能技术的需求不断提高,电池储能实施代表了一种有希望的解决方案,同时解决了可再生能源的间歇性和分数问题。在电池系统的支持下,可以显着增强可再生能源的利用,以存储不稳定的能源(例如太阳能和风),并突破了气候,时间和地理条件所表现出的实际应用场景的局限性,从而遏制碳的发育,并推动能源系统的开发,并朝着更加清洁的范围来驾驶,并逐渐驾驶,并有效地 - 逐渐效仿。4 - 7
CCCTC结合因子(CTCF)结合了其11个串联锌(ZF)DNA结合域的哺乳动物ChR量型的增强子和启动子的数十含量。除了12-15 bp的核序列外,某些CTCF结合位点还包含上游和 /或3'下游motifs。在这里,我们分别描述了人类CTCF重叠部分的两个结构,包括ZF1 – ZF7和ZF3 – ZF11与DNA的复合体中的ZF1-ZF7和ZF3 – ZF11,它们将核心序列与3'下游或5'上游基序一起结合在一起。像常规的串联ZF阵列蛋白一样,ZF1 – ZF7 fol-DNA的右手扭曲,每个填充物均占据并识别一个在DNA Major Grove中的三个碱基对的三重态。Zf8 pla ys独特的作用,充当跨DNA或gro的间隔物,并定位ZF9 – ZF11,使其与DNA进行交叉接触。我们将ZF1 – ZF7和ZF8 – ZF11的TW O子分组之间的差异归因于每个纤维内两个位置-6和-5处的残基,而ZF1-ZF7的残基和ZF8 – ZF8 – ZF8 – ZF8-ZF8 – ZF8 – ZF8的ZF1 – ZF7的残基和较小的残基。ZF8也富含碱性氨基酸,该氨基酸使盐桥允许在较小的含量中添加到DNA磷酸盐。较高的特异性Ar ginine-鸟氨酸和谷氨酰胺 - 腺嘌呤相互作用,用于ZFS的常规碱基相互作用位置在常规的碱基相互作用位置上进行补充,也适用于ZF9 – ZF11所采用的跨链相互作用。ZF1 – ZF7和ZF8-ZF11之间的差异可以比例化结构,并且可以促进高实用性CTCF结合位点的识别。
该试点项目重点测试了由 Urban Electric Power (UEP) 开发并集成到储能系统中的锌锰二氧化 (ZnMnO 2 ) 电池的性能,用于长时间应用。UEP 的技术利用了人们熟悉的“AA”碱性电池中使用的相同化学成分,利用丰富且价格合理的原材料,但可充电用于并网储能。电池符合适用的安全标准,并且与锂离子技术不同,不易发生热失控。UEP 在纽约制造电池并组装储能系统,系统平衡组件也在美国制造。除了不间断电源 (UPS) 产品外,UEP 还在开发储能解决方案,预计将于 2022 年为客户和公用事业应用达到商业准备就绪状态。
全世界有超过30亿人患有贫血相关的铁缺乏症,并且人数相等的人患有锌的缺乏症。这些条件在撒哈拉以南非洲和南亚地区更为普遍。在发展中国家,发现五十岁以下的儿童患增长和怀孕或哺乳期妇女的儿童受锌和铁的高度高风险。生物体质定义为开发种类的种类,其谷物含有较高水平的微量营养素,例如铁和锌,是最有前途的,成本效益和可持续的方法之一,可以改善资源贫乏家庭的健康状况,尤其是在家庭中融合了某些部分生长的家庭中的农村地区。通过小麦中的常规育种(尤其是谷物锌和铁)进行的生物体现,从野生和相关物种转移了重要的基因和定量性状基因座(QTL),从而做出了显着的贡献。尽管如此,小麦晶粒中铁和锌水平的定量,遗传复杂的性质限制了传统繁殖的发展,因此很难获得产量和晶粒矿物质浓度的遗传增益。小麦生物增强物可以通过增强矿物质吸收,矿物质的来源到链接易位以及它们沉积到谷物中以及矿物质的生物利用度来实现。在小麦中检测到了许多对这些特征的QTL,具有重大和较小的效果;将最有效的繁殖线引入将增加谷物锌和铁浓度。实现此目标的新方法包括标记辅助选择和基因组选择。需要合并更快的育种方法,以同时增加小麦育种线中的谷物矿物质含量和产量。