癌症中的骨健康:医师和盟友医疗保健专业人员Priya Manjoo博士,MBBS FRCPC内分泌学和代谢,温哥华岛健康局,维多利亚州维多利亚州的利益冲突:安姆根 - 安尔根 - 荣誉仪式 - 教育Imposiation介绍。Advisory boards Dr. Negin Shahid, MD MSc FRCPC Radiation Oncology, British Columbia Cancer - Victoria, Vancouver Island Health Authority Conflict of Interest: None Dr. Akshay Jain, MD FRCPC Endocrinology and Metabolism, Fraser Health Authority, Surrey, BC Conflict of Interest: Advisory board, Speaking honorarium and Clinical research participation- Amgen.Kerstin Gustafson博士,医学博士FRCSC妇科,弗雷泽卫生局,萨里,不列颠哥伦比亚省利益冲突:顾问委员会,演讲酬金 - 安尔根。Sue Purkiss博士,MD FRCPC内科,省卫生服务局,卑诗省温哥华,不列颠哥伦比亚省的利益冲突:无需大卫·肯德勒博士,MD FRCPC内分泌学和代谢,温哥华沿海卫生局,温哥华BC利益冲突:咨询公司:Amgen,Sandoz,Sandoz,Sandoz,Sandoz,Sandoz,Sandoz,ZP。Sue Purkiss博士,MD FRCPC内科,省卫生服务局,卑诗省温哥华,不列颠哥伦比亚省的利益冲突:无需大卫·肯德勒博士,MD FRCPC内分泌学和代谢,温哥华沿海卫生局,温哥华BC利益冲突:咨询公司:Amgen,Sandoz,Sandoz,Sandoz,Sandoz,Sandoz,Sandoz,ZP。We acknowledge the following BC Cancer health providers who generously offered their time and expertise as peer reviewers: Dr. Stephen Chia, MD FRCPC Medical Oncology British Columbia Cancer – Vancouver Dr. Hamid Raziee, MD MHSc FRCPC Radiation Oncology British Columbia Cancer – Kelowna Dr. Jack Zheng, MD FRCPC Radiation Oncology British Columbia Cancer - Abbotsford, Fraser Health Authority Krista Noonan博士,医学博士FRCPC医学肿瘤学不列颠哥伦比亚省癌症 - 萨里 - 帕梅拉·加德纳博士,DMD,DABOM口服肿瘤/牙科英属哥伦比亚癌症 - 温哥华 - 温哥华 - Malcolm Brigden博士,Malcolm Brigden博士肿瘤学不列颠哥伦比亚癌症 - 基洛纳(Kelowna)苏珊·巴尔克维尔(Susan Balkwill),医学博士FRCPC辐射肿瘤学不列颠哥伦比亚省癌症 - 萨里(Surrey - 温哥华
电子邮件:bouraa@fel.cvut.cz 注释:本文介绍了热电发电机(TEG)的特性测试台。它本质上是一个加热岛,由恒定电源供电,并利用热电发电机将能量回收至有用负载。该测试模拟了 TEG 的实际应用,即收集某些设备的废弃能量并将其用于为传感器节点供电。冷侧被认为处于室温,可以使用不同的散热器进行测试。摘要:本文介绍了一种用于热电发电机(TEG)特性测试的测试台。它本质上是一个由恒定功率供电的加热岛,并使用热电发电机将能量收集回到有用负载中。该测试模拟了 TEG 的实际应用,即收集设备产生的废弃能量并将其用于供电等。物联网节点。热电发电机的冷侧使用散热器维持在室温下,散热器可根据预期用途进行选择。
摘要:通过纳米载体分子进行靶向药物输送可以提高癌症治疗的效率。靶向配体之一是叶酸 (FA),它对叶酸受体具有高亲和力,而叶酸受体在许多癌症中过度表达。本文,我们描述了含有量子点 (QD) 和 β -环糊精 (β -CD) 的纳米缀合物的制备,这些纳米缀合物具有叶酸靶向特性,可用于输送抗癌化合物 C-2028。C-2028 通过与 β -CD 的包合物与纳米缀合物结合。研究了在 QDs-β -CD(C-2028)-FA 纳米缀合物中使用 FA 对癌细胞(H460、Du-145 和 LNCaP)和正常细胞(MRC-5 和 PNT1A)中的细胞毒性、细胞摄取和内化机制的影响。使用 DLS(动态光散射)、ZP(zeta 电位)、耗散石英晶体微天平 (QCM-D) 和紫外可见光谱法对 QDs-β-CD(C-2028)-FA 进行了表征。C-2028 与无毒 QDs 或 QDs-β-CD-FA 的结合不会改变该化合物的细胞毒性。共聚焦显微镜研究证明,在纳米结合物中使用 FA 可显著增加输送化合物的数量,尤其是对癌细胞而言。QD 绿 - β-CD(C-2028)-FA 通过多种内吞途径以不同水平进入细胞,具体取决于细胞系。总之,FA 是一种在 QDs 平台中用于向癌细胞输送药物的良好自导航分子。
摘要:纳米载体分子的靶向药物递送可以增加癌症治疗的效率。靶向配体之一是叶酸(FA),该叶酸对叶酸受体具有很高的属性,在许多癌症中都过表达。在此,我们描述了含有量子点(QD)和β-环性克推丁蛋白(β -cd)的纳米缀合物的制备,并具有叶状靶向特性,用于赋予抗癌化合物C -2028。C -2028通过β-CD的包含复合物与纳米偶联物结合。在癌症(H460,DU-145和LNCAP)和正常(MRC-5和PNT1A)细胞中,使用FA在QDS-β-CD(C-2028)-FA纳米缀合物中对细胞毒性,细胞摄取以及内在化机制的影响。使用DLS(动态光散射),ZP(ZETA电位),具有耗散(QCM-D)和UV-VIS光谱的QDS-β-CD(C-2028)-FA进行表征。C-2028与无毒QD或QDS-β-CD-FA的结合没有改变该化合物的细胞毒性。共聚焦显微镜研究证明,在纳米偶联物中使用FA显着增加了递送化合物的量,尤其是癌细胞。QD绿色-β-CD(C -2028)-FA通过不同水平的多个内吞作用途径进入细胞,具体取决于细胞系。得出结论,FA的使用是QDS平台中良好的自动分子,将药物输送到癌细胞中。
这项工作比较了化学和绿色合成的银纳米颗粒(AG-NP)的特征和抗菌活性。使用紫外可见光谱,傅立叶变换红外光谱(FTIR)分析,透射电子显微镜(TEM)和ZETA电位(ZP)表征Ag-NP。结果表明,化学合成的AG-NP(C-AG-NP)是球形的,粒径范围为4.86至13.6 nm,而绿色合成的AG-NP(G-AG-NP)的粒度范围为多形,尺寸为38.9至103 Nm。进行了抑制区域测试,以比较这两种版本的抗菌活性与孵化场的常见微生物的抗菌活性,例如:G +细菌(Cereus,Cereus,Cereus,Bacillus Bacillus utilis,枯草芽孢杆菌,金黄色葡萄球菌和葡萄球菌金黄色葡萄球菌和耐甲基甲基素 - 耐药蛋白酶葡萄球菌。金黄色葡萄球菌(MRSA),G-细菌(大肠杆菌O157;铜绿假单胞菌和鼠伤寒沙门氏菌),霉菌(尼日尔曲霉)和酵母(念珠菌)。通常,C-AG-NP和G-AG-NP都对测试的微生物都有重大影响。G-AG-NP对PS的抗菌作用。铜绿,蜡状芽孢杆菌和MRSA明显比C-AG-NP的强大,而C-AG-NPS对尼日尔Spergillus的抗真菌作用比G-AG-NP的抗真菌效应优越。为应用,将G-AG-NP和TH4(家禽设施的商业消毒剂)分别喷洒到鸡蛋孵化器的壁上,以比较它们对总有氧计数,总孢子数和总真菌的影响。结果表明,G-AG-NP和TH4对总有氧计数,总孢子计数和总真菌都有强大的影响。g-ag-nps表示的疗效高于Th4。可以得出结论,G-AG-NP可能是对禽类设施进行消毒的有前途的抗菌候选者。
该药物会接受进一步的监测。这将允许快速获取新的安全信息。我们要求医疗保健专业人员报告任何副作用的怀疑。副作用报告的详细信息请参阅第4.8节。1。comirnaty 30微克/剂量浓缩物的注射分散剂mRNA疫苗针对COVID-19(改性核苷)2。定性和定量组成这是一个多折瓶,其内容必须在使用前稀释。稀释后,一个注入瓶(0.45 mL)含有6剂0.3 ml,请参见第4.2和6.6节。一剂(0.3 mL)含有30微克的Tozinameranum,MRNA疫苗针对COVID-19疾病(封装在脂质纳米颗粒中)。Tozinameranum是单线介质(Messenger)RNA(mRNA),在5'端在5'端的帽子在相应的DNA矩阵和编码峰值(S)蛋白SARS-COV-2的体外非细胞转录中产生。辅助物质的完整列表,请参见第6.1节。3。药物形式的注射分散体(无菌浓缩物)。疫苗是白色至几乎白冷冻分散体(pH:6,9-7,9)。4。临床数据4.1治疗指示量30微克/剂量的注射浓缩剂用于主动免疫,以防止12岁及以上的人SARS-COV-2引起的CoVID-19疾病。必须根据官方建议使用该疫苗。建议第二剂在第一次剂量后3周(请参阅第4.4和5.1节)。4.2剂量和给药的剂量和剂量12岁的人和较旧的comirnaty疫苗在稀释后肌肉内施用,作为2剂2剂的初级循环(每个剂量0.3 ml)。在第二次剂量后至少在18岁及以上的个体中,可以至少在肌肉内服用加强剂量(第三剂量)。应考虑到有限的安全性数据,应根据有关疫苗有效性的可用数据进行决定,并向谁提交第三剂量的comirnaty(请参阅第4.4和5.1节)。
* 通讯地址:Aaron N. Hata,麻省总医院癌症中心,149 13th St,查尔斯顿,马萨诸塞州 02129,美国。ahata@mgh.harvard.edu,Michael S. Lawrence,麻省总医院癌症中心,149 13th St,查尔斯顿,马萨诸塞州 02129,美国。mslawrence@mgh.harvard.edu,Hideko Isozaki,麻省总医院癌症中心,149 13 th St,查尔斯顿,马萨诸塞州 02129,美国。hisozaki@mgh.harvard.edu。‡ 同等贡献作者贡献 HI、ANH、MSL 设计了研究、分析了数据并撰写了论文。HI、NN、WS、SM、MS、HFC、FMS、DT、HA、VN 和 ANH 进行了细胞系实验,研究药物敏感性和耐药性演变、APOBEC 表达分析和细胞信号通路研究。 SO、PJ 和 RB 进行 RNA 编辑研究。HI 和 MS 进行 DNA 损伤实验。HI、NN、HFC、NP、SB、MGC 进行肿瘤异种移植研究。KD、AR 从 NSCLC 患者中生成了患者来源的细胞系。RS、AA、AL、ML、CO、CSC、JJL、YEM 和 MSL 对细胞培养实验模型和临床肿瘤样本的全基因组和全外显子组测序、RNA-seq 和 ATAC-seq 进行计算分析。LZ、NJD、CB、GG、RB、JAE 参与实验设计和数据解释。MKB、RGC、ATS、JFG、JJL、LVS 和 ZP 提供了 NSCLC 患者样本和临床数据解释。BYY 对患者样本进行统计分析。ANH 和 MSL 对研究做出了同等贡献。所有作者都讨论了结果并对手稿发表了评论。
85( - %+’:e6oo:p7q jr stut stut 6wj7?:7UAPJ7,:7O6W?P6TA:7WAQ JR O>:S6QAQUAQ5:Quaquu:Quaquu:Qaov P:PQ:PQ:6PX> PAVI> PAVI> P:p:� 只有:,j7opju:pqa6w q5s \:nught a7:xjwj?vy g7 o> aq z6z:p,:o> o> o> o> o> paxs:luq 6wj7?:78 UAPJ7,:7O6W?P6AT:7OQ 67T O>:P:W6J7Q> azs s:OU [:7 QZ:7 QZ:7 QZ:XA:XA:QUQ 67T 67T 67T 6SJU:?PJ57T NAS:O67 EW6O:65 , 6WZA7: ,:6TJ[ 67T 6WZA7: QO:ZZ:Y N>: P:Q5WOQ 6P: Q5,,6PA]:T 6Q RJWWJ[Q :( % ) "+) QZ:XA:Q [:P: P:XJPT:T A7 "'# ZWJOQ' JR '# QAO:Q%)。jr [> ax> jxx5pp:t a7 6wza7:,:6t8 j [q 67t%*'a7 6wza7:qo:qo:zz:zz:y n>:75,s:p jr qz:xa:xa:xa:q p67?:t rpj, * oj *“ a7 6wza7:,:6tj [> aw:ao p67?:t rpj,“ oj%(a7 6wza7:qo:zz:y(”)= z:xa:xa:q pax> 7:qq a7xp:6q:6q:t [ao> w6oao5t:67t wj7 wj7?ao5t:ao5t:ao5t:a o5t:a o5t:k p:sp:xp:xp:xp:xp:xp:xp:6q:6 q:so: 676WA QZ:XAQUE:7:7OAJ7,:7O6W R6XAPQ'Q> Q'A:QA PAXAD [6Q QA?Q:6QJ7 ZP:Xazao6OAJ7 67T [6p,o> a7t:^y( *)= Z:XA:XA:Q pax> 7:qQ [6Q ZJQAOAU:WV XJPP:WV XJPP:W6O:W6O:W6O:W6O:w6o:t [ao> 6SJU:? 6sju:?PJ57T ́,6QQQQ ]6WZA7:,:6TJ [6wza7:QO:QO:ZZ:,NAS:,NAS:O67 EW6O:65 b:QQ PAX PAX PAX
传统上,将基因组编辑试剂引入哺乳动物受精卵是通过细胞质或原核微注射完成的。这一耗时的过程需要昂贵的设备和高水平的技能。受精卵电穿孔提供了一种简化和更精简的方法来转染哺乳动物受精卵。有许多研究检查了小鼠和大鼠受精卵电穿孔中使用的参数。在这里,我们回顾了已报道的小鼠和大鼠的电穿孔条件、时间和成功率,以及关于牲畜受精卵(特别是猪和牛)的少数报道。在受精时或受精后不久引入编辑试剂可以帮助降低嵌合率,即个体细胞中存在两种或更多种基因型;引入核酸酶蛋白而不是编码核酸酶的 mRNA 也可以。嵌合在世代间隔较长的大型牲畜物种中尤其成问题,因为通过繁殖获得非嵌合的纯合后代可能需要数年时间。通过非同源末端连接途径实现的基因敲除已得到广泛报道,并且使用电穿孔成功实现的基因敲除比基因敲入更多。将大型 DNA 质粒递送到受精卵中会受到透明带 (ZP) 的阻碍,并且大多数通过电穿孔实现的基因敲入都使用短单链 DNA (ssDNA) 修复模板,通常小于 1 kb。在不使用细胞质注射的情况下,将长达 4.9 kb 的较大供体修复模板与基因组编辑试剂一起递送到受精卵中最有希望的方法是使用重组腺相关病毒 (rAAV) 与电穿孔相结合。但是,与用于递送成簇的规律间隔回文重复序列 (CRISPR) 基因组编辑试剂的其他方法类似,这种方法也与高水平的嵌合性有关。最近的研究成果是利用编辑过的生殖系能力细胞补充生殖系消融个体,从而避免基因组编辑创始系生殖系中出现嵌合现象。即使通过电穿孔介导将基因组编辑试剂递送至哺乳动物受精卵,基因组编辑流程中仍存在其他瓶颈,目前阻碍了非嵌合基因组编辑牲畜的可扩展生产。
硬骨鱼在动物中显示最大的性别确定系统,导致各种生殖策略。对硬骨植物中与性别相关的基因的研究将扩大我们对过程的理解,并对脊椎动物中性别确定过程的可塑性提供重要的见解。Crimson Seabream(Parargyrops Edita Tanaka,1916年)是整个亚洲最有价值,最丰富的鱼类资源之一。但是,有关P. Edita的基因组信息很少。在本研究中,用RNA-Seq技术对男性和女性P. Edita的转录组进行了测序。从库中生成了总共388,683,472读。过滤和组装后,用2,921 bp的N50获得了总共79,775个非冗余单基因。The unigenes were annotated with multiple public databases, including NT (53,556, 67.13%), NR (54,092, 67.81%), Swiss-Prot (45,265, 56.74%), KOG (41,274, 51.74%), KEGG (46,302, 58.04%), and GO (11,056,13.86%)数据库。对P. Edita不同性别的单基因的比较表明,在男性和女性之间,有差异表达了11,676个单基因(女性为9,335,男性为2,341个)。在女性中特别表达了5,463个,在男性中特别表达了1,134个。此外,确认了十个单基因的表达水平,以通过QRT-PCR验证转录组数据。此外,在含SSR的序列中鉴定出34,473个简单的序列重复序列(SSR),然后随机选择50个基因座以进行引物发育。和途径(MAPK信号通路,p53信号通路等)成功扩增了36个基因座,19个基因座是多态性的。最后,我们的比较分析确定了许多与性别相关的基因(ZP,AMH,GSDF,SOX4,CYP19A等)P. Edita的。 此内容丰富的转录组分析提供了有价值的数据,以增加P. Edita的基因组资源。 结果将有助于阐明性别确定的分子机制以及对性相关基因的未来功能分析。。此内容丰富的转录组分析提供了有价值的数据,以增加P. Edita的基因组资源。结果将有助于阐明性别确定的分子机制以及对性相关基因的未来功能分析。