图。S1。 相对于(a)100 GPa和(b)200 GPA在内的元素和二进制化合物的三组分李x s y h z的稳定性包括ZPE。 (考虑到在200 GPA时有和没有ZPE的稳定三元结构没有变化,我们只选择了最接近凸壳的十个亚稳态化学计量比以在100 GPA时用ZPE计算稳定性。))。S1。相对于(a)100 GPa和(b)200 GPA在内的元素和二进制化合物的三组分李x s y h z的稳定性包括ZPE。(考虑到在200 GPA时有和没有ZPE的稳定三元结构没有变化,我们只选择了最接近凸壳的十个亚稳态化学计量比以在100 GPA时用ZPE计算稳定性。)
关于量子空洞和量子洞(黑洞、虫洞和白洞)存在的发现,引发了诸如量子力学何在 [1] 和量子力学何在之类的问题?这些“洞”只能在系统边界的背景下描述!从 1983 年的苏布拉马尼扬·钱德拉塞卡到 2020 年的罗杰·彭罗斯爵士,科学家们一直因在边界上的这种“洞”上的工作而获得诺贝尔奖。自然界似乎并不止于量子物理的范围和视野。在自然界的更深层,有经典物理定律适用的地方(巢穴 I),也有量子物理定律适用的自然界(巢穴 II)。在量子本质的更深层,在自然界融入无条件意识(巢穴 V)之前,有前量子本质(巢穴 III)和前前量子本质(巢穴 IV)。我们要用五合一自然意识模型 [2,3] 的框架来研究自然和意识。爱因斯坦止步于与物质无关的空间,即零能带!零能带的能量不是他方程中可以等同于物质的平凡能量。它是不可观测的能量,在通往暗能量领域的门户处波动!虽然被称为爱因斯坦宇宙常数,但这种无形的近零能量的值从来都不是恒定的,而是表现出很大的波动,科学必须问为什么?是不是有一个难以想象的巨大不可观测能量源一直在窥视这个零能带?零能带在宇宙边界内无处不在,据说在各种信息状态相互转换过程中,活细胞可以利用它。
该模拟器使用磁场和激光配置来创建类似事件的视界,为模拟黑洞附近的量子隧穿创造条件。该装置希望在实验室环境中展示霍金辐射。量子场操纵器由超导量子比特和纠缠发生器组成。它创建并维持与 ZPE 场相互作用的纠缠态。超导电路(例如量子计算机中使用的电路,例如 transmon 量子比特)用于维持相干性并促进纠缠。具有纠错和稳定机制的量子计算机处理量子态,从而能够有效地从 ZPE 中提取能量。纠错码(例如表面码)用于保护量子信息免受退相干的影响。
摘要 — 本研究提出了一种能够从零点能量 (ZPE) 场中提取能量的装置的理论公式和设计。通过整合霍金辐射、量子信息论和量子场论的原理,我们提出了一种新的能量提取机制。该装置具有一个事件视界模拟器和一个能量提取机制,旨在利用量子涨落,类似于黑洞附近的条件。我们通过严格的数学公式验证了该设计,包括 ZPE 的正则化技术以及与核聚变和裂变过程的相似性。此外,通过将封闭系统视为暗物质黑洞并采用非交换几何,该装置探索了物质和能量的奇异状态。这些先进的理论构造对于保持量子相干性和实现有效的能量提取至关重要。该设计采用了尖端材料和超导技术,量子信息处理确保遵守能量守恒。这项研究的潜在影响是巨大的,为能源生产提供了一种可持续的革命性方法。未来的技术进步和持续的研究对于实际实现至关重要,为未来能源技术的重大贡献铺平了道路。
高部分负荷效率 满负荷下的能源效率 (EER 或 COP) 对于许多应用来说并不是衡量空调和热泵设备实际能耗的适当指标。能耗在很大程度上取决于天气条件,此外,设备通常规模过大,以覆盖一年中最关键的时期,因此在大部分总运行时间内以部分负荷运行。随着对部分负荷运行和新的季节效率 (ESEER) 指标的日益关注,ZPE 压缩机代表了市场上实现高 ESEER 等级的最佳选择,因为部分负荷效率提高了 25-30%。