量子计算是一种计算模型,其中数据存储在受量子物理定律控制的粒子状态下。该理论已经足够确定,可以设计其应用程序从公共和私人参与者那里收集利益的量子算法[29,31,17]。量子对象的基本属性之一是具有双重解释。在第一个中,量子对象被理解为粒子:空间中的确定,局部点,与其他粒子不同。光可以被视为一组光子。在另一种解释中,该对象被理解为波浪:它在空间中“扩散”,可能具有干扰。这是将光解释为电磁波的解释。计算的标准模型使用量子位(Qubits)来存储信息和量子电路[30],以描述带有量子门的量子操作,这是布尔门的量子版本。尽管用于量子计算的普遍模型,但仅以直观的方式给出了量子电路的操作语义。量子电路被理解为某种顺序的低级装配语言,其中量子门是不透明的黑盒。特别是,量子电路本身并不具有任何形式的操作语义,从而引起抽象的推理,方程理论或有充分的重写系统。从表示的角度来看,量子电路是线性操作员的张量和应用的字面描述。这些可以用历史矩阵解释[30]或更近期的总计语义[1,6]来描述这些 - 这可以是
ZX-Calculus是一种用于推理量子组合的图形语言,最近在各种领域(例如量子电路优化,表面代码和晶格手术,基于测量的量子计算和量子基础)中使用了增加的用法。本综述的第一半是对ZX-Calculus的温和介绍,适合那些具有量子计算基础知识的人。这里的目的是使读者对ZX-Calculus足够舒适,他们可以在日常工作中使用它来用于量子电路和状态的小型计算。latter部分给出了有关ZX-Calculus文献的凝结概述。我们讨论了cli的计算并以图形方式证明了Gottesman-Knill定理,我们讨论了最近引入的ZX-Calculus的扩展,该扩展允许方便地进行有关oli gates的方便推理,我们讨论了最新的完整性理论,用于ZX-Calculus的ZX-CALCULUS,以原则上的ZX-Calculus使用ZX,可以使用ZX进行ZX的所有ZX,所有ZX都可以使用ZX进行ZX。在方面,我们讨论了ZX-Calculus的分类和代数起源,并讨论了该语言的几个扩展,这些扩展可以代表混合状态,测量,经典控制和更高维度。
可扩展量子计算的首选纠错方法是使用格手术的表面代码。基本的格手术操作,即逻辑量子位的合并和分裂,对逻辑状态的作用是非单一的,而且不容易被标准电路符号捕获。这就提出了一个问题:如何最好地设计、验证和优化使用格手术的协议,特别是在具有复杂资源管理问题的架构中。在本文中,我们证明了 ZX 演算(一种基于双代数的量子图解推理形式)的运算与格手术的运算完全匹配。红色和绿色“蜘蛛”节点匹配粗糙和平滑的合并和分裂,并遵循匕首特殊结合 Frobenius 代数的公理。一些格手术操作需要非平凡的校正操作,这些操作在使用 ZX 演算时以图集合的形式原生捕获。我们通过考虑两种操作(T 门和产生 CNOT)首次体验了微积分作为格手术语言的强大功能,并展示了 ZX 图重写规则如何为这些操作提供新颖、高效且高度可配置的格手术程序。
减少电路中非克利福德量子门的数量是有效实现量子计算的重要任务,尤其是在容错机制下。我们提出了一种基于 ZX 演算减少量子电路中 T 门数量的新方法,该方法在无辅助电路的情况下,在大多数基准电路上,该方法与之前减少 T 计数的方法相当甚至更好,在某些情况下,改进幅度高达 50%。我们的方法首先将量子电路表示为 ZX 图,这是一种张量网络状结构,可以根据 ZX 演算规则进行变换和简化。然后,我们表明,可以使用一种称为相位隐形传态的新技术扩展最近提出的简化策略以减少 T 计数。该技术允许非克利福德相位通过通用量子电路非局部传播来合并和抵消。相位隐形传态不会改变非相位门的数量或位置,该方法也适用于任意非克利福德相位门以及参数化电路中相位参数未知的门。此外,我们使用的简化策略足以验证许多电路的相等性。特别是,我们用它来证明我们优化的电路确实与原始电路相等。我们已经在开源库 PyZX 中实现了本文的例程。
免责声明:1- 为改进产品特性,本文档提供的信息(包括规格和尺寸)如有变更,恕不另行通知。订购前,建议购买者联系 SMC - 桑德斯特微电子(南京)有限公司销售部,获取最新版本的数据表。2- 在需要极高可靠性的情况下(例如用于核电控制、航空航天、交通设备、医疗设备和安全设备),应使用具有安全保证的半导体器件或通过用户的故障安全预防措施或其他安排来确保安全。3- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对用户根据数据表操作设备期间因事故或其他原因造成的任何损害负责。 SMC - 桑德斯特微电子(南京)有限公司对任何知识产权索赔或因应用数据表中描述的信息、产品或电路而导致的任何其他问题不承担任何责任。4- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对因使用超过绝对最大额定值的数值而导致的任何半导体设备故障或任何二次损坏负责。 5- 本数据表不授予任何第三方或 SMC - 桑德斯特微电子(南京)有限公司的任何专利或其他权利。6- 未经 SMC - 桑德斯特微电子(南京)有限公司书面许可,不得以任何形式复制或复印本数据表的全部或部分。7- 本数据表中描述的产品(技术)不得提供给任何其应用目的会妨碍维护国际和平与安全的一方,其直接购买者或任何第三方也不得将其用于此目的。出口这些产品(技术)时,应根据相关法律法规办理必要的手续。
FCC - 合规声明(美国) 本设备符合第 15 部分的规定。操作需遵守以下两个条件:1. 本设备不得造成有害干扰,2. 本设备必须接受任何接收到的干扰,包括可能导致意外操作的干扰。 根据 FCC 规则第 15 部分的规定,本设备经过测试,符合 A 类数字设备的限制。这些限制旨在为在商业环境中操作设备时提供合理的有害干扰保护。 本设备会产生、使用并能辐射射频能量,如果不按照产品手册进行安装和使用,可能会对无线电通信造成有害干扰。但是,不能保证在特定安装中不会发生干扰。 如果本设备确实对无线电或电视接收造成有害干扰,建议用户采取以下一项或多项措施: 重新调整或重新放置接收天线。 增加设备和接收器之间的距离。 将设备连接到与接收器连接的电路不同的电路插座上。 咨询经销商或经验丰富的 RF 服务技术人员以获取帮助。重要提示:1. 安装无线电时,用户与天线之间必须至少保持 20 cm 的距离。 2. 无线电不得与另一无线电共置或同时用于传输。 3. 主机系统应贴有标签,表明系统包含经过认证的模块。例如“包含 FCC ID:I28-W2WLAN11G,IC ID:3798B-W2WLAN11G;或”包含 FCC ID:I28-RFIDM6EM,IC ID:3798B-RFIDM6EM“。 4. 无线电仅适合在 5150-5250 GHz 频率范围内在室内使用。用户应注意,未经 Zebra Technologies 明确批准的任何更改或修改都可能导致用户操作设备的权限失效。为确保合规性,本打印机必须与全屏蔽通信电缆一起使用。
注意 数据表的内容如有更改,恕不另行通知。 在没有设备规格表确认的情况下,SHARP 对使用目录、数据手册等中所示的任何 SHARP 设备的设备可能出现的任何缺陷不承担任何责任。 在使用任何 SHARP 设备之前,请联系 SHARP 以获取最新的设备规格表。