图1:晶格结构,紧密的结合定义以及单个和耦合Polyyne链的带结构。(a)在Polyyne中较短的键和较长的键之间跳跃术语。c原子在A和B位点由黑色和绿色圆圈表示。应注意,这是晶格结构的卡通图,旨在表明δ1>δ2和所描绘的长度不缩放。实际上,δ2〜0。97δ1。(b)在AA配置中显示的两个与链间跳的关闭链链。c原子用不同的颜色表示。该系统显然具有围绕ZZ'线的反射(平等)对称性或晶格翻译产生的任何其他线路的对称性。等效地,每个单位单元格还有一条奇偶校验对称性(未显示在图中)。垂直虚线表示(a)和(b)的单位单元格。(c)单个和(d)耦合的多扬链的带结构,用于放松的链间分离和AA堆叠。虚线蓝线代表紧密结合,实心绿松石线代表DFT带结构。轨道投影的带结构是为(e)单个和(f)耦合链附近x点附近的X点绘制的。各种轨道对频段的贡献用不同的颜色表示。用绿色虚线显示费米级。在(f)的插图中显示了x点处最高占用分子轨道(HOMO)的带状电荷密度。与(a)中相同的轴方向遵循了插图图。
总结错误的学习(LWE)问题是密码学中的基本问题之一,并且在量词后加密术中有许多应用。问题有两个变化,决定性销售问题和搜索问题。lwe搜索降低的降低表明,搜索网络问题的硬度可以减少到决定性验证问题的硬性问题。还可以将还原的效率视为概率之间难度的差距。我们启动了针对LWE问题的量子搜索减少的研究,并提出了一种满足样本的减少。在降低样本的降低中,它甚至可以为实例数量提供所有参数。尤其是,我们的量子还原仅调用区分程序2次来解决搜索问题,而经典减少则需要多项式的调用数量。此外,我们给出了放大还原算法的成功概率的方法。在样品复杂性和查询复杂性方面,我们放大的还原与经典减少无与伦比。我们的还原算法支持广泛的误差分布,并且还为与噪声问题的学习平价提供了搜索降低。在构造搜索决策还原的过程中,我们在z q上给出了量子goldreich-levin定理,其中q是素数。简而言之,该定理指出,如果相对于均匀随机的A∈Zn Q,可以用概率明显大于1 /Q来预测硬核较大的A(mod Q),则可以确定S∈ZZ n Q。关键词:错误学习,学习噪音,搜索降低,戈德里希·莱文定理,Quantum降低,查询复杂性,样本复杂性
*家禽疾病系,动物健康研究所,本ha分支,农业研究中心(ARC),埃及Benha 12618; Y生物技术系,农业研究中心动物健康研究所(ARC),吉萨12618,埃及; Z Holding Company用于生物产品和疫苗的公司,Dokki,Giza 12311,埃及; X NAQAA纳米技术网络(NNN),埃及吉萨; #农业研究中心动物健康研究所(ARC)的兽医质量控制参考实验室,埃及吉萨12618; k努拉·阿卜杜拉曼大学(Nourah Bint Abdulrahman University,riyadh 11671),科学学院生物学系,沙特阿拉伯; {Benha-Branch,Benha-Branch,农业研究中心(ARC)的生物化学系(药理学),埃及Benha 12618; **埃及Qalyubia的Moshtohor 13736兽医学院病毒学系; YY生物科学系科学与艺术学院,国王阿卜杜勒齐兹大学,拉比21911,沙特阿拉伯; ZZ国王阿卜杜勒齐兹大学科学系生物化学系,吉达21589,沙特阿拉伯; XX农业学院农业学院XX农业学院,Zagazig大学,Zagazig 44511,埃及; ##阿拉伯联合酋长国大学生物学系,阿拉伯联合酋长国15551年,阿拉伯联合酋长国;俄克拉荷马州立大学兽医学院兽医病理学系,俄克拉荷马州斯蒂尔沃特,美国俄克拉荷马州74078
z , Jinbao Lyu is , Jong-Lyel Roh bb , Enyong Dai cc , Gabbor Juhasz dd,ee , Wei Leu's , Jai' Piacentini mm,n , Wen-Xing Ding' Zhivotovsky xx,yy,ys , Sébastein Besteiro horror , Dmitry I. Gabrilovich bbb , Do-Hyung Kim CCC,Valerian E. Kagan DDD,HülyaBayiree,Guang-Cho Chen FF,Skot Ayton Ggg',Masaki Comatsu,Stefan Krautwadd JJJ Michael Thumm,Martin Campmann vv,Martin Campmann VV, BBBB,Helbert J. Zeccc Guido Croemer’
1 德国海德堡大学曼海姆大学医学中心(UMM)医学院第一医学系,邮编 68167 曼海姆;rujia.zhong@medma.uni-heidelberg.de (RZ);schimanski.t@gmail.com (TS);feng.zhang@medma.uni-heidelberg.de (FZ);huan.lan@medma.uni-heidelberg.de 或 lh6402196@126.com (HL);alyssa.hohn@web.de (AH);qiang.xu@medma.uni-heidelberg.de (QX);mengying.huang@medma.uni-heidelberg.de (MH);zhenxing.liao@medma.uni-heidelberg.de (ZL);lin.qiao@medma.uni-heidelberg.de (LQ); zhen.yang@medma.uni-heidelberg.de (ZY); yingrui.li@medma.uni-heidelberg.de (YL); zhihan.zhao@medma.uni-heidelberg.de (ZZ); xin.li@medma.uni-heidelberg.de (XL); roselena1996@gmail.com (LR); sebastian9876@googlemail.com (SA); lasse-maywald@web.de (LM); jonasnelsonmueller@googlemail.com (JM); hendrik.dinkel@yahoo.de (HD); yannick.xi@medma.uni-heidelberg.de (YX); siegfried.lang@umm.de (SL); ibrahim.akin@umm.de (IA) 2 DZHK(德国心血管研究中心),合作伙伴网站,68167 曼海姆,德国; narasimha.swamy@mdc-berlin.de (NS); mandy.kleinsorge@gwdg.de (MK); sebastian.dieck@mdc-berlin.de (SD); lukas.cyganek@gwdg.de (LC) 3 西南医科大学心血管研究所,教育部医学电生理重点实验室,四川省医学电生理重点实验室,泸州 646000,中国 4 苏黎世大学心脏中心心脏病学系,Rämistrasse 100,8091 苏黎世,瑞士;ardan.saguner@usz.ch (AS); first.duru@usz.ch (FD) 5 海德堡大学人类遗传学研究所人类遗传学系,69120 海德堡,德国; johannes.jannsen@uni-heidelberg.de 6 马克斯·德尔布吕克分子医学中心,13125 柏林,德国 7 哥廷根大学医学中心心脏病学和肺病学诊所干细胞科,37075 哥廷根,德国 8 波鸿鲁尔大学贝格曼希尔大学医院,44789 波鸿,德国;ibrahim.elbattrawy2006@gmail.com * 通讯地址:xiaobo.zhou@medma.uni-heidelberg.de;电话:+49-621-383-1448;传真:+49-621-383-1474 † 这些作者对本文的贡献相同。‡ 这些作者为高级作者。
了解物种间染色质构象的进化对于阐明基因组的结构和可塑性至关重要。线性远距离基因座的非随机相互作用以物种特异性模式调节基因功能,影响基因组功能、进化,并最终影响物种形成。然而,来自非模式生物的数据很少。为了捕捉脊椎动物染色质构象的宏观进化多样性,我们通过 Illumina 测序、染色体构象捕获和 RNA 测序为两种隐颈龟 (cryptodiran,藏颈龟) 生成从头基因组组装:Apalone spinifera (ZZ/ZW,2 n = 66) 和 Staurotypus triporcatus (XX/XY,2 n = 54)。除了在线性基因组中检测到的融合/裂变事件外,我们还检测到龟类的三维 (3D) 染色质结构与其他羊膜动物存在差异。也就是说,全基因组比较揭示了龟类染色体重排的不同趋势:(1)鳖科(Trionychidae)的基因组改组率较低,而鸡(可能是龟类的祖先)与核型高度保守;(2)动胸龟科(Kinosternidae)和翠龟科(Emydidae)的融合/裂变率中等。此外,我们还发现了一种染色体折叠模式,这种模式使以前在龟类中未检测到的“着丝粒 - 端粒相互作用”成为可能。“着丝粒 - 端粒相互作用”(本文发现)加上“着丝粒聚集”(之前在蜥蜴类中报道过)的组合龟类模式对于羊膜动物来说是新颖的,它反驳了以前关于羊膜动物 3D 染色质结构的假设。我们假设,在龟类中发现的不同模式起源于羊膜动物祖先状态,该状态由核结构定义,微染色体之间存在广泛的关联,这些关联在线性基因组改组后得以保留。
摘要:镉 (Cd) 污染因其显著的毒性、环境持久性和污染的普遍性已成为全球关注的重大环境问题。值得注意的是,农作物中镉的生物累积是其进入人类饮食的主要载体。这一问题亟待科学界和政策制定者的关注,以制定和实施有效的缓解策略。本综述深入探讨了镉胁迫对植物的生理影响,包括抑制光合作用、放大氧化应激和破坏矿物质营养稳态。此外,还探索了植物应对镉胁迫的抗性机制,并评估了分子育种策略在增强作物对镉的耐受性和最大限度地减少其生物累积方面的潜在贡献。通过整合和分析这些发现,我们寻求为未来的研究轨迹提供信息,并提出战略方针,以增强农业可持续性、保障人类健康和保护环境完整性。 关键词:镉胁迫;作物耐受性;生理反应;分子育种策略 镉 (Cd) 污染具有相当大的毒性、环境持久性和广泛的污染,是全球范围内的重大环境挑战 (Jia 等人,2022)。采矿作业、发电、工业冶金、城市交通、施肥和废水灌溉等人类活动导致陆地和水生生态系统中 Cd 的逐渐积累 (Sarwar 等人,2010)。土壤基质中 Cd 的溶解度增加会对受污染田地中的作物产量和质量产生有害影响。此外,Cd 通过食物链的生物放大作用,最终被作物吸收,随后被人类摄入,对公众健康构成严重威胁,需要立即采取有效的恢复措施 (Järup,2003;Cao ZZ 等人,2018)。土壤中可供人类吸收的 Cd 比例
祭坛。Abd Elhady Algharably、Michel Asia、AH Jan. Stephane Laurent ll、Drano Lovic 和 Mahious Miglinas、Crzystof Narkeewicz vv、Teemu Niiranen Pathac Bub、Alexandre Perssu、波兰人、Josep Redon Stefano Fatherdei、Thomopoulos 海岸、Maciage Tomasski 和 Philippe Van de Borne、Christoph qqq
和dp1 2 5。1 7。b tl U.E.s无(1 88)1 4 i n d。3 8 1,1 6 ne。3 4 2; b l o c k k vf a l Mou或c(1 8 87 5 k。1 8 4,3 Sw1 29; c o l f ad:c ovl和n或n(1 8 8 6)69 I O W A 68 3。29 nw7 8 0 0; C H A M N这一天(1 853)37 m a i n e 7 6; W m p。s tl o is and t c crrc(1 88 1 2 2 1 11。1 9 6,1 1 Ne。9 0 6; S H L E R V E R V通道(1 8 9 5)1 6 8 P As t30,31 a tl9 4 3。c o n,决赛。这是C O(1 8 1 1)3 7 OH I O S T A T E 3 39; pi t t s b和c r r c v g和m(1 858)3 2 p a s t 3 4 0; FRA和D D V n j s t n e c o (1 8 7 8)2 9 N j e q(1 8 1 1)3 7 OH I O S T A T E 3 39; pi t t s b和crrcvg和m(1 858)3 2 p as t3 4 0; FRA和D D Vnjs t n e c o(1 8 7 8)2 9 Nje q
b“)#*''..'$)*'&'&'3&*$'%&'$'$'$'*' - $。 div>$ 5。 div>'6 7 899:<= <>? 7@aabc <= <9:; <= <>? div>;; 7 = 7:ntumlj? fl:i7 = vln?;;? div>:ld; 89v7 = 7ii? div>_lhf7i <= <>? 7d9pmln7 = ln? e = i7aml ;? 7 =? div>:? c:dwi7 = \\] d qlm7jifl:i \\ d8:xljp? div>:dwi7 = \\]? div>qlm7jifl:i; 7 = 9:<= <> \\ dey? l:n79pmln7 =? div>_? div>;; 7dcaolj7jn \\ dqlm7jifl:i; 7 = a; l:; lpdv7j? qlm7jifl:i ?; 7 = a; div>; PD8:? xljp? o7pij \\ qlm7jifl:idb <=?>:dwi7 = \\] k qlm7jifl:i:l7:n vln?; 7 = 9:; <= <> \\ dl?> lx7:; c; 7 = 9:<= <> \\ 7:n ahmm:? grpjcnf7i <= <>? ld9:g <= <>? div>:? GHFCL? nl = glj> dcl? div>; 7 = 9:; <= <> \\ d8:xljp?我\\
