。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
然而,由于生物和非生物限制,玉米的产量仍低于农作物的潜在产量,从而导致粮食不安全(FAO,2017)。在寄生的杂草中,根半寄生虫S. hermonthica是对玉米产量的最具破坏性和主要限制(Khan等,2014)。损害的程度取决于感染的时间和程度。在高侵扰中最多可引起100%(Amusan等人。2008)。 由于Striga造成的损失估计为每年70亿美元。 今天,杂草影响了1亿多农民(Spallek等,2013)。 Striga Hermonthica(巨人女巫的草药),这是一种寄生植物,原产于埃塞俄比亚和苏丹(艾米。2008)。由于Striga造成的损失估计为每年70亿美元。今天,杂草影响了1亿多农民(Spallek等,2013)。Striga Hermonthica(巨人女巫的草药),这是一种寄生植物,原产于埃塞俄比亚和苏丹(艾米。b等,2011)。在1997年进行的一项单独的调查发现,Striga Hermonthica是埃塞俄比亚最广泛的寄生杂草物种,所调查的310个玉米领域的Striga的总发病率为41%。
在全球气候变异性的背景下,可以预见到,全球多个农业地区将在干旱和热压力的情况下经历兴起。今天,这些非生物应力是影响农作物发育和产量的主要限制因素。它在半干旱地区很普遍,但是气候变化对玉米产量产生了重大影响。气候变化对玉米产量提出了重大挑战,而热应激的增加是一个主要问题。较低的产率,较差的谷物质量以及对害虫和疾病的敏感性增加是热应激对玉米生理学的负面影响。可以根据气候变化预测以及预计的发育和生理气孔反应的预测来对玉米的最佳管理选择。本研究的当前结果总结了玉米对热应激的生理反应,其中包括光合作用,呼吸,用水效率和生殖活性的适应。此外,许多基因工程策略,包括用于耐热性和生物技术治疗(包括基因工程)的繁殖,以减轻热应激对玉米产生的不利影响和玉米气孔发展中的适应性。在玉米对气候威胁的调整中,分子过程起着关键作用,特别是强调了气孔的功能。某些特定基因(例如AOX,ZM-AN13和ZMSEC14P)在强化玉米防止严重温度波动方面起着至关重要的作用。简介通过合并这些数据,传统繁殖,当前技术和掌握生理反应的结合对于增强玉米来承受即将来临的气候变化的能力至关重要。关键字:热应激,玉米生理学,玉米产量,气孔反应,育种策略引用:Ahmad U,Hussain MA,Ahmad W,Javed J,Arshad Z和Akram Z,2024。全球气候变化对玉米(Zea Mays)的影响:生理反应和现代繁殖技术。趋势生物技术植物科学2(1):62-77。 https://doi.org/10.62460/tbps/2024.020 1。
摘要:生物学方法目前是从土地上去除有害物质的最常用方法。这项研究工作着重于对石油污染土地的修复。研究了脂肪液烃和PAHS的生物降解,因此研究了生物放射B1和B2的结果。生物制备B1是根据自毒细菌开发的,由菌株Dietzia sp。in118,gordonia sp。in101,53 In Mycolicibacterium frederiksbergense,119 In119 In rhodococcus erythropolis,113 In113和Raoultella sp。in109,而生物制剂B2富含真菌,例如sydowii,asspergillus versicolor,candida sp。,cardosporium halotolerans,penicillium chrysogenum。由于在接种生物制备B1的土壤下进行的生物降解测试的结果,TPH和PAH的浓度分别降低了31.85%和27.41%。用生物制备B2的土壤接种b2更有效,因此TPH的浓度降低了41.67%,PAH降低了34.73%。另一个问题是使用Zea Mays的预处理G6-3B2土壤的植物修复。测试是在三个系统(系统1-Soil G6-3B2 + Zea Mays; System 2-Soil G6-3B2 +生物制品B2 + Zea Mays; System 3-SOIL G6-3B2 + BIPGA-PGA + ZEA MAYS)持续6个月。在系统3中获得了最高程度的TPH和PAH降低,分别为65.35%和60.80%。使用Phytotoxkit TM,Ostracodtoxkit TM和Microtox®在非接种系统1中记录了最低的植物修复效率,其中TPH的浓度降低了22.80%,PAH降低了18.48%。
Rahul Raj、Umesha C 和 Pranav Kumar DOI:https://doi.org/10.33545/26174693.2024.v8.i7Si.1606 摘要 田间试验于 2023 年喀里夫季节在农学系作物研究农场进行。实验采用随机区组设计,共十个处理,重复三次。处理细节如下:T 1:磷 40 千克/公顷 + 纳米尿素 1 毫升/升,T 2:磷 60 千克/公顷 + 纳米尿素 1 毫升/升,T 3:磷 80 千克/公顷 + 纳米尿素 1 毫升/升,T 4:磷 40 千克/公顷 + 纳米尿素 3 毫升/升,T 5:磷 60 千克/公顷 + 纳米尿素 3 毫升/升,T 6:磷 80 千克/公顷 + 纳米尿素 3 毫升/升,T 7:磷 40 千克/公顷 + 纳米尿素 4 毫升/升,T 8:磷 60 千克/公顷 + 纳米尿素 4 毫升/升,T 9:磷 80 千克/公顷 + 纳米尿素 4 毫升/升和对照地块。试验结果表明,施用 60 kg/ha 磷肥和 4 ml/l 纳米尿素(处理 8)可显著提高植株高度(202.00 cm)、最大植株干重(310.00 g/plant)、最大作物生长率(27.00 g/m 2 /day)、每穗最大行数(12.93)、行粒数(22.67)、种子指数(22.70 g)、籽粒产量(5.54 t/ha)、秸秆产量(9.92 t/ha)、收获指数(35.86%)。关键词:玉米,磷,纳米尿素,生长和产量。介绍玉米(Zea mays L.)是继水稻和小麦之后最重要的谷物作物之一,在全球农业中占有突出地位。在印度,玉米仅次于水稻和小麦,位居第三。在印度,玉米用于谷物和饲料,以及家禽和牛饲料混合物的成分和其他工业用途。玉米也称为玉蜀黍,是世界上最重要和最具战略意义的作物之一。其原产地是墨西哥(中美洲)。它是一种 C4 植物,被称为“谷物皇后”,因为它具有高生产潜力和跨季节的广泛适应性。它高效利用太阳能,具有巨大的增产潜力,被称为“奇迹作物”。玉米通过优质蛋白质在确保粮食安全和营养安全方面发挥着至关重要的作用。玉米的营养成分(每 100 克)如下:蛋白质 4 克。碳水化合物 30 克,膳食纤维 3.5 克,脂肪 1.5 克,糖 3.6 克,钙 4 毫克,锌 0.72 毫克等。(Dragana 等人,2015 年)[8]。玉米植株的每个部分都具有经济价值(谷粒、叶子、茎秆、穗和穗轴),都可用于生产各种食品和非食品产品。全球 170 多个国家种植玉米,面积达 1.88 亿公顷,产量达 14.23 亿公吨。自 2005 年以来,印度玉米种植面积位居第四位,为 989 万公顷,年产量为 3165 万吨,位居第六。在印度各邦中,中央邦和卡纳塔克邦的玉米种植面积最高(各占 15%),其次是马哈拉施特拉邦(10%)、拉贾斯坦邦(9%)、北方邦(8%)、比哈尔邦(7%)、特伦甘纳邦(6%)。目前,印度生产的玉米 47% 用于家禽饲料,13% 用于牲畜饲料,13% 用于食品,淀粉工业消耗约 14%,加工食品占 7%,6% 用于出口和其他用途。(IIMR,2021 年)。磷的应用会影响植物的生长行为。它是生长、糖和淀粉的利用、光合作用、细胞核形成和细胞分裂、脂肪和蛋白形成所必需的。光合作用和碳水化合物代谢产生的能量储存在磷酸盐化合物中,供以后生长和繁殖使用(Ayub 等人,2002 年)[5]。它在植物体内很容易转移,随着植物细胞的形成,从较老的组织转移到较年轻的组织
摘要。高等植物的雄性不育现象是除雄蕊早熟、雌蕊早熟、异花柱(柱头不同)和自交不亲和性之外,迫使外部授粉的进化条件机制之一。由于消除了耗时且成本高的母系去雄过程,雄性不育系成为包括玉米在内的许多植物物种杂交品种种子生产中令人感兴趣的对象。使用雄性不育系进行杂交品种种子生产需要建立在不同环境下雄性不育的母系和具有育性恢复基因的合适父系。本文总结了玉米雄性不育和育性恢复遗传学方面的研究成果。
Helicoverpa Zea(鳞翅目:夜养科)是北美洲和南美主要种植作物的害虫。该物种适应了不同的宿主植物,并对几种杀虫剂产生了抗性,包括苏云金芽孢杆菌(BT)杀虫蛋白在转基因棉和玉米中。Helicoverpa Zea种群在热带和亚热带地区全年持续存在,但是季节性迁移到温带地区增加了相关作物损害的地理范围。为了更好地了解这些生理和生态特征的遗传基础,我们为来自BT抗性菌株的单个H. Zea雄性HAZSTARK_CRY1ACR生成了高质量的染色体水平组装。HI-C数据用于将最初的375.2 MB重叠组装脚手架成30个常染色体和Z性染色体(支架N50 = 12.8 MB和L50 = 14)。SCAF折叠组件是通过新型管道PolishClr对错误校正的。线粒体基因组通过改进的管道组装并注释。对该基因组组装的评估表明,鳞翅目基准通用单拷贝直系同源物集的98.8%是完整的(98.5%作为完整的单副本)。重复元素约占组装的大约29.5%,其多数(11.2%)被归类为恢复元素。这个针对H. Zea的染色体规模参考组件,Ilhelzeax1.1,将促进未来的研究,以评估和增强可持续的作物生产实践。
目的:旨在确定堆肥茶对不使用矿物肥料而产生的甜玉米质量参数的影响。研究方法:这项研究是在尼日利亚塔拉巴州立大学教学和研究农场进行的。这项研究中的肥料处理为500千克HA -1 NPK肥料(对照),每10升水堆肥茶,每20升水堆肥茶和1千克堆肥每30升水堆肥茶,在随机完整的块设计中排列,重复的thrice,每30升水堆肥茶。的发现:结果表明治疗对评估的甜玉米的物理,化学和感觉特征有显着影响(P≤0.05)。矿物质(NPK)肥料治疗给出了平均平均总溶糖含量(33.13 mg g -1),其次是每10升水堆肥茶(33.10 mg g -1),然后每20升每20升堆肥1 kg堆肥,然后是水堆肥茶(31.72 mg g -1)和30千克的糖含量(2 colpy composte)。 )。然而,每10升水堆肥茶和矿物质(NPK)肥料处理的影响相同(p> 0.05)。研究局限性:报告没有限制。独创性/价值:本研究说明了每10升水堆肥茶浓度使用1千克堆肥的可能性,以产生良好的产量和质量,而没有矿物质肥料。
1个农艺学院,荷兰农业大学,长沙410128,中国; adnanbreeder@yahoo.com(A.R.); jhd20210218@stu.hunau.edu.cn(H.J.); hpl888@stu.hunau.edu.cn(P.H.); azlHh@stu.hunau.edu.cn(l.z.); mys9204@stu.hunau.edu.cn(y.m。); xhcsoldier@163.com(H.X.)2 Khwaja Fareed工程与信息技术大学农业工程系,巴基斯坦Rahim Yar Khan 62400; basharat2018@yahoo.com 3 Al-jumum大学学院生物学系,乌姆·库拉大学,麦加21955,沙特阿拉伯; shqari@uqu.edu.sa 4江西农业大学生态科学研究中心,中国330045; muhassanuaf@gmail.com 5工程研究中心园艺作物的种质创新和新品种育种,荷兰省植物生物学的主要实验室,荷兰教学院,荷兰农业大学,荷兰农业大学,中国长沙410128,中国; rizwan.phyto@outlook.com *通信:ibfcjyc@vip.sina.com2 Khwaja Fareed工程与信息技术大学农业工程系,巴基斯坦Rahim Yar Khan 62400; basharat2018@yahoo.com 3 Al-jumum大学学院生物学系,乌姆·库拉大学,麦加21955,沙特阿拉伯; shqari@uqu.edu.sa 4江西农业大学生态科学研究中心,中国330045; muhassanuaf@gmail.com 5工程研究中心园艺作物的种质创新和新品种育种,荷兰省植物生物学的主要实验室,荷兰教学院,荷兰农业大学,荷兰农业大学,中国长沙410128,中国; rizwan.phyto@outlook.com *通信:ibfcjyc@vip.sina.com
摘要:昆虫ATP结合的盒式转运蛋白亚家族C2(ABCC2)的成员被称为苏皮鲁西斯芽孢杆菌(BT)的Cry1ac杀虫蛋白的受体。废除ABCC2功能结构域的突变已知会引起对Cry1ac的抗性,尽管报告的抗药性水平取决于昆虫物种的差异很大。在这项研究中,使用CRISPR/CAS9评估了ABCC2基因作为Helicoverpa Zea的推定CRY1AC受体的功能,该受体的主要有害生物是300多种农作物,以逐步消除不同的功能性ABCC2域。来自具有编辑昆虫线支持的生物测定结果,即ABCC2中的突变与7.3至39.8倍的CRY1AC耐药比(RR)有关。在部分或完全的ABCC2敲除之间检测到H. Zea之间对Cry1ac的敏感性的显着差异,尽管在敲除ABCC2的一半时观察到了最高的公差水平。基于在类似的研究中针对密切相关的飞蛾物种的类似研究中报道的> 500–1000倍的RR,在H. Zea敲除中观察到的低RR支持ABCC2不是该昆虫中主要的Cry1ac受体。