简单的摘要:母体提供的mRNA和蛋白质(称为母体因素)由斑马鱼中的14,000多个编码基因产生。他们在控制卵母细胞的形成和早期胚胎的发展方面扮演着独家角色。这些母体因素还可以补偿其相应的二胞基因产物功能的丧失。因此,消除母体和二氏基因产物对于阐明超过一半的斑马鱼基因的功能至关重要。但是,灭活母体因素总是具有挑战性的,因为传统的遗传方法在技术上要求或耗时。我们最近的工作建立了一种快速的条件敲除方法,以产生一个鱼类中产生母体或母体和鸡叶突变体。在这里,我们进一步测试了这种方法的可行性,以同时淘汰具有功能性冗余的两个母体基因。作为原理的证明,我们第一次成功地为DVL2和DVL3A基因生成了双母体突变体胚胎。通过这种方法获得的突变胚胎中的细胞运动缺陷模仿了在先前报道的镶嵌策略之后进行了几个月耗时筛查后产生的真正突变胚胎。因此,该方法有可能加快寄生虫基因的功能研究。
使用体内测定法,我们选择了11个基因,这些基因在斑马鱼中使用微阵列分析和RNA测序时在排卵期间高度上调。Starmaker基因(STM)是这些基因之一。尽管以前据报道在斑马鱼的早期发育期间据报道STM参与耳石形成,但我们在卵中检测到了其在卵中的表达,表明STM通过使用CRISPR/CAS9系统建立STM基因敲除菌株与受精有关。在本研究中对STM敲除鱼进行了进一步的表型分析。具有较高的非施肥率,STM突变菌株的存活率极低。纯合突变斑马鱼的耳石表现出异常的胚胎和成年鱼类形态。但是,鱼在胚胎或成年人中没有显示出游泳行为的任何异常。STM蛋白。纤维支持的旋钮样结构(Fe)也显示出STM突变体中的异常结构。STM蛋白对于耳石形成是必需的,缺乏STM会导致耳石形成异常。耳石形成的部分缺陷不会导致游泳行为的缺陷。STM蛋白在绒毛膜中表达,并负责Fe上纤维支撑的旋钮样结构的形成。建议缺乏STM由于FE的形成不足而导致较低的受精率。
大脑衰老是一个复杂的过程,涉及多种途径,包括从细胞到分子的各种成分。本研究旨在探讨斑马鱼大脑从青年到成年,以及从成年到老年过程中基因表达的变化。对从斑马鱼脑中分离的神经元细胞进行 RNA 测序。这些细胞富含祖细胞标记物,而这些标记物在整个衰老过程中会减少。我们发现了 176 个具有统计学意义的差异表达基因,并根据基因本体描述确定了一组基因,这些基因被归类为细胞粘附分子。在另一组斑马鱼大脑、健康人类和阿尔茨海默病大脑样本以及 Allen Brain Atlas 数据中进一步测试了这些基因的相关性。我们观察到,在衰老过程中,GJC2 和 ALCAM 这两个基因的表达变化在所有实验组中都是一致的。我们的发现为健康大脑老化提供了一组新的标记,并为神经退行性疾病的治疗方法提出了新的目标。2020 Elsevier Inc. 保留所有权利。
溶酶体贮积症 (LSD) 是一类由 70 种代谢紊乱组成的疾病,其特征是溶酶体蛋白突变导致贮积物积聚、多器官病变(通常涉及神经退化)以及大量患者的早期死亡。除了需要更有效的治疗方法外,还存在着对疾病病因的进一步了解,这可能揭示新的途径和药物靶点。在过去的几十年里,随着诱变技术的进步显著提高了哺乳动物和非哺乳动物系统中模型生成的效率,模型生物的研究促进了对疾病相关途径的了解。在本综述中,我们重点介绍了 LSD 的非哺乳动物模型,特别关注斑马鱼,这是一种脊椎动物模型生物,与哺乳动物具有显著的遗传和代谢相似性,同时还具有独特的优势,例如光学透明性和适合高通量应用。我们研究已发表的斑马鱼 LSD 模型及其报告的表型,探讨特定生物体的优势和局限性,并讨论可能提供潜在解决方案的最新技术创新。
根据Howe等人在自然界发表的论文。(2013),70%的蛋白质编码人基因与斑马鱼(Danio Rerio,ZF)中发现的基因有关,已知与人类疾病相关的基因中有84%具有ZF对应物。为了瞥见BPA对人荒地的潜在影响,我们确定了在步骤1中发现的ZF基因的人类同源物,并使用人类数据库(例如Ipathwaywayguide and ToppFun)对其进行了分析。我们的数据表明,3周暴露于BPA的成人ZF中的几个miRNA,包括一些在人类中也表达的miRNA,保证在人类中进行进一步的直接调查。我们的研究还表明,BPA影响ZF生殖系统标记物以及与非酒精性脂肪肝病(NAFLD),细胞周期,自噬/凋亡,氧化磷酸化和癌症有关的途径。我们还确定了几种表观遗传因子被BPA上调,包括EZH2,EZH2是一种连接2种基因沉默的表观遗传系统的组蛋白甲基转移酶,特异性组蛋白甲基化和DNA甲基化(Doherty等人。 2010)。 EZH2的过表达已在许多人类癌症中描述。 我们的“表观遗传学”热图(图6)表明,BPA增加了EZH2的表达,以及DNMT1(DNA甲基转移酶)。 这与Doherty等人一致。 2010和Santangeli等。 (2016)。 这些数据共同表明,在成人ZF中,对BPA的“短期”接触可以改变包括miRNOME在内的表观基因组。 2013)。2010)。EZH2的过表达已在许多人类癌症中描述。 我们的“表观遗传学”热图(图6)表明,BPA增加了EZH2的表达,以及DNMT1(DNA甲基转移酶)。 这与Doherty等人一致。 2010和Santangeli等。 (2016)。 这些数据共同表明,在成人ZF中,对BPA的“短期”接触可以改变包括miRNOME在内的表观基因组。 2013)。EZH2的过表达已在许多人类癌症中描述。我们的“表观遗传学”热图(图6)表明,BPA增加了EZH2的表达,以及DNMT1(DNA甲基转移酶)。这与Doherty等人一致。2010和Santangeli等。(2016)。这些数据共同表明,在成人ZF中,对BPA的“短期”接触可以改变包括miRNOME在内的表观基因组。2013)。斑马鱼是一个伟大的毒理学系统模型,具有许多优势,例如高繁殖力,短代循环,低成本维持,基因组易于修饰,胚胎和成人的透明度,胚胎在外部,高,高的,高的遗传代码在早期的生活阶段和活跃的阶段和跨越阶段的发展阶段。使用斑马鱼作为癌症模型的想法出现了10年前,现在开始产生结果(White等人与使用人类和小鼠系统的癌症生物学社区一致,斑马鱼模型可以提供一套独特的工具,可以帮助癌症研究工作。对于其他研究领域,包括NAFLD,这是一种高度普遍的严重慢性肝病,影响了所有美国人的1/3 rd。基于基因鹅肝(鹅卵石)的突变而存在的斑马鱼模型,该突变导致类似于人NAFLD的脂肪肝病,其特征是幼虫的幼虫中富含脂质的肝细胞和幼虫的细胞凋亡,年轻时为5 dpf(Goldsmith&Jobin,2012年)。鉴于包括miRNA在内的表观遗传特征的变化已被证明可以驱动动物和人类模型中许多疾病的进展,因此清楚地确定BPA如何影响表观遗传组和下游途径的表观概念组很重要。据我们所知,这是第一个研究BPA对斑马鱼mirnome的影响的研究。据我们所知,这是第一个研究BPA对斑马鱼mirnome的影响的研究。
这里介绍的方法是由一位使用过 Alt-R CRISPR-Cas9 系统的客户提供的。这可以作为在类似模型生物中使用 Alt-R CRISPR-Cas9 系统的起点,但可能并未针对您的基因或应用进行完全优化。IDT 不保证这些方法,IDT 的应用专家只能提供一般指导以及有限的故障排除和支持。