干细胞是成熟器官中细胞的前体。他们参与了胚胎发生的不同阶段,也参与器官发育的更高级阶段。它们分化为更成熟的细胞,高度取决于其微环境中的信号。造血干和祖细胞(HSPC)是所有血细胞类型的基础。由于它们驻留在一个相当明确的利基市场中,该利基市场由间充质基质细胞(MSC)和内皮细胞(EC)组成,因此它构成了研究HSPCS和小裂细胞之间相互作用的出色模型。这些细胞在胚胎发生过程中很少见,并且会产生。然后,他们在利基市场中找到自己的房屋,并每天产生数十亿个血细胞。在小鼠中,通过在麻醉小鼠上进行手术方法来获取颅骨表面的血管(称为Calvarium)的血管来完成对活动物中这些干细胞的观察,可以使用显微镜对其进行成像。但是,这些传统方法在解决方案方面仍然不足以定义内源性HSPC在其利基市场中的超微结构。
Tübingen und Freiburg ENU 筛选和 Sanger ZMP 项目(全基因组蛋白质编码基因敲除) • 为欧洲实验室提供简单且经济高效的途径获取这些品系 • 镜像美国资源中心 ZIRC 的热门品系 • 提供额外资源,如质粒、基因组图谱、筛选、培训
成功地,我们使用LFB开发了整个安装染色方案,以染色斑马鱼模型髓鞘和神经细胞。我们已经优化了LFB在整个生物体中穿透中枢神经系统的细胞成分。我们开发的染色方法成功地突出了斑马鱼发育中的大脑的神经解剖学。使用斑马鱼幼虫的LFB髓磷脂染色程序的流程图如图1所示。此外,我们的修改协议还达到了斑马鱼大脑结构的整个固定染色,而无需构成样品结构。我们在斑马鱼标本中使用了4%的常规固定剂(常规固定剂)。在固定过程之前,用蛋白酶K处理斑马鱼样品。蛋白酶K处理可显着改善污渍渗透到整个固定标本中。之后,蛋白酶K处理斑马鱼在4°C下放置在固定剂中过夜。对于其他透化,我们使用Triton X-100洗涤剂来改善染色渗透,而不会影响固定样品的结构形态。在使用卢克索快蓝色和甲三角紫的斑马鱼标本的染色过程中显示(图2)。
抽象背景信息:糖尿病(DM)在新兴国家和发达国家都大大峰值,并且使用营养方法来控制糖尿病控制,最近引起了很多关注。香蕉(Musa spp。)在世界热带地区无处不在。在热带和亚热带气候中发现了野生植物穆萨·阿克米纳塔(Musa acuminata),也称为卡文迪许香蕉。近年来,敏锐的敏锐的健康优势引起了很多关注。植物的每个组成部分都被用于传统医学治疗多种疾病。虽然已经报道了Musa Acuminata各个部分的抗糖尿病潜力,但尚未对CORM进行广泛的研究。目的:考虑到缺乏有关抗糖尿病性抗糖尿病潜能的数据,我们建议使用斑马鱼模型评估相同的数据。材料和方法:腹膜内施用链霉菌素(STZ)在斑马鱼中诱导糖尿病。将鱼类维持在2%的蔗糖溶液中,用于48小时,以诱导糖尿病,然后将其转移到10、20或30 µg/ml的相应的含有CORM提取物的治疗罐中;在第8天,它们都被安乐死并用于生化和组织病理学分析。结果:在10、20和30 µg/ml时,穆萨·阿克米纳塔(Musa acuminata Corm)提取物(MACE)在糖尿病斑马鱼模型中引起了明显的葡萄糖降低作用。这是从酶分析中可以明显看出的。在这一点上,这项研究中鉴定出的MACE的抗糖尿病潜力的精确作用方式无法完全解密。组织病理学分析还揭示了绒毛的生长增长,并且在经过MACE治疗组的肠道中增加了杯状细胞的数量。结论:MACE在预防糖尿病并发症等高胆固醇和高脂血症等糖尿病并发症中的作用支持其主张,即它可以用作辅助药物或替代其他糖尿病药物。需要进行其他研究才能缩小负责这种效果的主动植物成分以及发挥这种作用的机制。
图 1:6xTCF/LEF-miniP:GFP 斑马鱼系对 Wnt 信号通路的小分子调节剂产生可量化的反应。(A) Wnt/β-catenin GFP 报告基因 6xTCF/LEF-miniP:dGFP 转基因斑马鱼系的示意图。(B) 受精后 48 小时 (hpf) 的 6xTCF/LEF-miniP:dGFP 斑马鱼幼虫。GFP 荧光表明 Wnt 信号活跃,尾鳍 (虚线框) 用于量化。(C) 用 DMSO、Wnt 通路抑制剂 XAV939 或 Wnt 通路激活剂 BIO 处理 24 小时的 6xTCF/LEF- miniP:dGFP 幼虫中的代表性尾鳍荧光。从左到右的面板显示了明场图像、GFP 荧光和使用 ImageJ 软件对荧光进行标准化阈值处理。图中标出了与 DMSO 相比荧光增加或减少的百分比。比例尺 = 500 μm。
在过去的几十年里,斑马鱼因其发育快、基因操作简单、成像简单、与人类共享保守的疾病相关基因和途径等优势,成为一种越来越受欢迎的疾病模型。与此同时,疾病机制的研究越来越多地关注非编码突变,这需要增强子和启动子等调控元件的基因组注释图。与此同时,斑马鱼研究的基因组资源正在扩大,产生了各种基因组数据,有助于定义调控元件及其在斑马鱼和人类之间的保守性。在这里,我们讨论了生成斑马鱼基因组调控元件功能注释图的最新进展,以及如何将其应用于人类疾病。我们重点介绍了社区驱动的发展,例如 DANIO-CODE,以生成斑马鱼基因组数据和功能注释的集中和标准化目录;考虑当前注释图谱的优势和局限性;并提供解释和整合现有图谱与比较基因组学工具的考虑因素。我们还讨论了开发标准化基因组学协议和生物信息学流程的必要性,并为开发分析和可视化工具提供建议,这些工具将整合各种多组学批量测序数据以及快速扩展的单细胞方法数据,例如使用测序对转座酶可及染色质进行单细胞测定。此类整合工具对于利用批量基因组学提供的多组学染色质表征以及新兴单细胞方法提供的细胞类型分辨率至关重要。总之,这些进展将构建一个广泛的工具包,用于探究斑马鱼的人类疾病机制。
乳腺癌 (BC) 是全球女性中最常见的恶性肿瘤。尽管 BC 的治疗方法多种多样,但其结果并不令人满意,尤其是在三阴性乳腺癌 (TNBC) 患者中。高效肿瘤学的主要挑战之一是实现评估肿瘤分子基因型和表型的最佳条件。因此,迫切需要新的治疗策略。动物模型是 BC 的分子和功能表征以及开发靶向 BC 疗法的重要工具。斑马鱼作为一种有前途的筛选模型生物,已广泛应用于患者来源的异种移植 (PDX) 的开发,以发现新的潜在抗肿瘤药物。此外,在斑马鱼胚胎/幼虫中生成 BC 异种移植可以描述肿瘤的生长、细胞侵袭以及肿瘤与宿主体内的系统相互作用,而不会对移植的癌细胞产生免疫原性排斥。有趣的是,斑马鱼可以进行基因操作,其基因组已被完全测序。斑马鱼的遗传学研究描述了与 BC 致癌作用有关的新基因和分子途径。因此,斑马鱼体内模型正在成为转移研究和发现 BC 治疗新活性剂的绝佳替代方案。在此,我们系统地回顾了斑马鱼 BC 模型在致癌作用、转移和药物筛选方面的最新前沿进展。本文旨在回顾斑马鱼 (Danio reiro) 在生物标志物识别和药物靶向的临床前和临床模型中的作用的现状,以及 BC 个性化医疗的发展。
精神疾病作为国际疾病的重要组成部分,严重危害人类的健康和社会稳定,其发病机制复杂,发病率逐年上升。为了尽快分析精神疾病的发病机制,寻找针对性的精神疾病药物治疗,迫切需要建立更加合理的动物模型。斑马鱼因与人类基因组同源性高,脑组织与人极为相似,且易于实现全身光学可视化和高通量筛选,在众多的精神疾病动物模型中脱颖而出。通过模拟人类的行为测试和社会学分析,结合分子分析等检测手段,可以建立有价值的优质斑马鱼精神疾病模型。本文重点综述了斑马鱼模型模拟人类精神疾病的研究进展,综述了各种行为表征手段、所用设备、工作原理,总结了各种精神疾病斑马鱼模型的建模方法;提出了当前面临的挑战和未来的发展趋势,为探索精神障碍的机制和治疗策略提供理论支持。
1 欧洲非线性光谱实验室,Via Nello Carrara 1, 50019 Sesto Fiorentino,意大利; turrini@lens.unifi.it (LT); roschi@lens.unifi.it (LR); devito@lens.unifi.it (GdV); francesco.pavone@unifi.it (FSP) 2 佛罗伦萨大学神经科学、心理学、药物研究和儿童健康系,Viale Gaetano Pieraccini 6, 50139 佛罗伦萨,意大利 3 佛罗伦萨大学复杂动力学研究中心,Via Giovanni Sansone 1, 50019 Sesto Fiorentino,意大利 4 佛罗伦萨大学物理和天文学系,Via Giovanni Sansone 1, 50019 Sesto Fiorentino,意大利 5 国家研究委员会国家光学研究所,Via Nello Carrara 1, 50019 Sesto Fiorentino,意大利 6 佛罗伦萨大学生物系,Via Madonna del Piano 6, 50019 Sesto Fiorentino,意大利 * 通讯地址:francesco.vanzi@unifi.it
CCMB 提议开设一门使用基因编辑技术 CRISPR 对斑马鱼胚胎进行基因组工程的培训课程,以培养满足行业和学术界需求的就业人力资源。该计划针对来自政府实验室/研究所、行业、医院、病理学实验室、大学的学生和员工,旨在培训他们能够设计和构建 CRISPR 构建体并生成敲除和敲入斑马鱼转基因系。