骨骼肌收缩肌纤维的形成是一个复杂过程,若受到干扰则会导致肌营养不良。在此,我们提供了三种不同斑马鱼突变体的 mRNAseq 数据集,这些突变体在胚胎发生过程中影响肌肉组织。这些突变体包括肌球蛋白折叠伴侣 unc45b (unc45b/)、热休克蛋白 90aa1.1 (hsp90aa1.1/) 和乙酰胆碱酯酶 (ache/) 基因。在受精后 72 小时 (hpf) 对这三个突变体进行了重复实验中的转录组分析,并对 unc45b/ 进行了另外两个发育时间 (24 hpf 和 48 hpf)。通过层次聚类分析了总共 20 个样本以查找差异基因表达。本研究的数据支持 Etard 等人的观察结果。 (2015) [1] ( http://dx.doi.org/10.1186/s13059-015-0825-8 ) 肌球蛋白折叠失败会激活骨骼肌中独特的转录程序,该程序与应激肌肉细胞中诱导的程序不同。 & 2016 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by/4.0/ )。
摘要:甲基parathion(MP)已被广泛用作食品保存和害虫管理的有机磷农药,导致其在水生环境中的积累。,MP对非目标物种的早期发育毒性,尤其是水生脊椎动物,尚未得到彻底研究。 在这项研究中,用2.5、5或10 mg/l的MP溶液处理斑马鱼胚胎,直到施肥后72小时(HPF)。 结果表明,MP暴露降低了斑马鱼胚胎的自发运动,孵化和存活率,并降低了诱导的降低异常异常,例如身体长度缩短,蛋黄水肿和脊柱曲率。 值得注意的是,发现MP会诱导心脏异常,包括心包水肿和心率降低。 暴露于MP会导致活性氧(ROS)的积累,超氧化物歧化酶(SOD)活性降低,过氧化氢酶(CAT)活性增加,丙二醛(MDA)水平升高,并导致Zebrafifififiahyde(MDA)水平并引起心脏凋亡。 此外,MP影响了与心脏发育相关基因的转录(VMHC,SOX9B,NPPA,TNNT2,BMP2B,BMP4)和与凋亡相关的基因(P53,BAX,BCL2)。 astaxanthin可以通过下调氧化应激来挽救MP诱导的心脏发育缺陷。 这些发现表明MP诱导心脏发育毒性,并提供了MP对水生生物的毒性的其他证据。,MP对非目标物种的早期发育毒性,尤其是水生脊椎动物,尚未得到彻底研究。在这项研究中,用2.5、5或10 mg/l的MP溶液处理斑马鱼胚胎,直到施肥后72小时(HPF)。结果表明,MP暴露降低了斑马鱼胚胎的自发运动,孵化和存活率,并降低了诱导的降低异常异常,例如身体长度缩短,蛋黄水肿和脊柱曲率。值得注意的是,发现MP会诱导心脏异常,包括心包水肿和心率降低。暴露于MP会导致活性氧(ROS)的积累,超氧化物歧化酶(SOD)活性降低,过氧化氢酶(CAT)活性增加,丙二醛(MDA)水平升高,并导致Zebrafifififiahyde(MDA)水平并引起心脏凋亡。此外,MP影响了与心脏发育相关基因的转录(VMHC,SOX9B,NPPA,TNNT2,BMP2B,BMP4)和与凋亡相关的基因(P53,BAX,BCL2)。astaxanthin可以通过下调氧化应激来挽救MP诱导的心脏发育缺陷。这些发现表明MP诱导心脏发育毒性,并提供了MP对水生生物的毒性的其他证据。
成功地,我们使用LFB开发了整个安装染色方案,以染色斑马鱼模型髓鞘和神经细胞。我们已经优化了LFB在整个生物体中穿透中枢神经系统的细胞成分。我们开发的染色方法成功地突出了斑马鱼发育中的大脑的神经解剖学。使用斑马鱼幼虫的LFB髓磷脂染色程序的流程图如图1所示。此外,我们的修改协议还达到了斑马鱼大脑结构的整个固定染色,而无需构成样品结构。我们在斑马鱼标本中使用了4%的常规固定剂(常规固定剂)。在固定过程之前,用蛋白酶K处理斑马鱼样品。蛋白酶K处理可显着改善污渍渗透到整个固定标本中。之后,蛋白酶K处理斑马鱼在4°C下放置在固定剂中过夜。对于其他透化,我们使用Triton X-100洗涤剂来改善染色渗透,而不会影响固定样品的结构形态。在使用卢克索快蓝色和甲三角紫的斑马鱼标本的染色过程中显示(图2)。
摘要:2型糖尿病(T2D)发生率的不懈增加,需要有效的动物模型模仿其病理生理学。斑马鱼具有类似人类的代谢特征并具有重要的遗传相似性,使其成为研究代谢疾病(包括T2D)的宝贵候选者。本综述强调了动物模型在糖尿病研究中的关键作用,尤其是专注于斑马鱼作为替代模型生物。对斑马鱼中T2D的非遗传模型的不同方法,例如葡萄糖溶液,饮食诱导的,化学诱导的,化学诱导的和饮食诱导的葡萄糖溶液方法,强调使用T2D指标的模型验证。但是,一个重要的缺点在于验证这些模型。其中一些模型尚未广泛证明持续的高血糖或对胰岛素抵抗和葡萄糖耐量测试的反应,描述了胰腺β -Cell的形态,或者表现出它们对抗氧化药物的反应。这些工具对于T2D病理至关重要。对斑马鱼中T2D非遗传模型的未来研究必须广泛专注于验证模型中存在的代谢缺陷,并在人类中具有相同的代谢缺陷,并改善现有模型,以更好地理解T2D的分子机制,并探索潜在的治疗疗法。
摘要:自闭症谱系障碍(ASD)是一种神经发育障碍,其特征是社会互动和沟通,焦虑,多动症和兴趣仅限于特定受试者的障碍。除了遗传因素外,多个环境因素与ASD的发展有关。动物模型可以作为了解ASD复杂性的关键工具。在这项研究中,通过将胚胎暴露于替代后的4至48 h,将胚胎暴露于丙戊酸(VPA),从而在斑马鱼中开发了一种ASD的化学模型,并将其饲养到鱼水中的成人阶段。首次将行为分析和神经递质概况的综合方法用于确定在幼虫和成人阶段对早期暴露于VPA的影响。幼虫显示出多动症,视觉和振动逃生反应的降低,以及谷氨酸升高和乙酰胆碱和去甲肾上腺素水平的降低,神经递质的变化。来自VPA处理的胚胎的成年人表现出受损的社会行为,其特征是较大的浅滩尺寸和对其种类的兴趣减少。神经递质分析显示,大脑中多巴胺和GABA水平显着降低。这些结果支持该模型对ASD研究的潜在预测有效性。
在成人生物体中灭活基因功能的能力对于研究诸如再生和行为等生物学过程至关重要。这是通过工程化等位基因来实现的,该等位基因可以使用CRE重组酶有条件地灭活,然后使用药物诱导的CRE重组酶灭活基因功能。最近的一些研究清楚地表明,工程在斑马鱼中的有条件等位基因的可行性。同时,实现足够程度的重组以诱导完全丧失功能的丧失仍然是一个主要限制。在此,我们通过设计由斑马鱼β-Actin2基因的内含子增强子的斑马鱼泛素启动子组成的重组泛素启动子UBB R来解决这一限制。使用PHIC31介导的靶向集成,我们证明了UBB R在所有胚胎和幼虫阶段测试的UBB R显然均优于父母启动子以及目前可用的无处不在的Creer T2驱动线。此外,我们生成的UBB R:CRER T2驱动线使成人斑马鱼心中的Floxed等位基因几乎完全失活。最后,我们证明了我们的UBB R启动子在其他基因组基因座集成时会保留高活性,从而使其独特地适合于斑马鱼的所有阶段的转基因表达。
慢性甲基苯丙胺的使用是一种广泛的药物流行,与脉动dIAC形态和电重塑有关,从而导致多种疾病性疾病的发展。虽然已经记录了甲基苯丙胺来诱导心律不齐,但大多数结果源自从经历了不同持续时间的甲基苯丙胺滥用的用户的临床试验中,尚未提供有关在标准化设置中使用甲基苯胺的文献。此外,关于甲基苯丙胺如何影响心血管系统的潜在分子机制仍然难以捉摸。在心脏毒性和心律不齐之间寻求与斑马鱼中甲基苯丙胺滥用的关系,以识别和了解与甲基苯丙胺相关的不良心脏症状。斑马鱼首先在2周的持续时间内每周用甲基苯丙胺治疗3次。在治疗后立即使用内部开发的电力学分析的采集系统进行了脑电图测量(ECG)测量。对斑马鱼心肌细胞中cAMP表达和Ca 2+调节进行了后续分析。营地对于心肌纤维化和心律不齐的发展至关重要,这是心血管疾病发展的明显症状。Ca 2+失调也是引起心律不齐的一个因素。在治疗的第一周,用甲基苯丙胺给药的斑马鱼表现出降低的心率,这在整个第二周持续存在,并且显着低于未经治疗的鱼的心率。的结果还表明,在治疗的早期阶段,心率变异性增加,随后在实验期间,经甲基胺治疗的鱼的晚期减少,表明对甲基苯丙胺暴露的双相反应。甲基苯丙胺处理的鱼在整个实验过程中也表现出QTC间隔的减少。CAMP和Ca 2+测定法的结果表明,cAMP被上调,Ca 2+因甲基苯丙胺治疗而失调。胶原式测定表明对甲基苯丙胺的纤维化反应显着
胶质母细胞瘤(GBM)仍然是最恶性的原发性脑肿瘤,中位生存期很少超过2年。肿瘤性质和免疫抑制微环境是导致当前治疗方法反应率较差的关键因素。GBM相关的巨噬细胞(GAM)经常表现出可促进肿瘤进展的免疫抑制特征。但是,他们与GBM肿瘤细胞的动态相互作用仍然很熟悉。在这里,我们使用了患者衍生的GBM干细胞培养物,并结合了GAM-GBM共培养的单细胞RNA测序,并在正局主题斑马鱼异种移植模型中对GAM-GBM相互作用的实时监测进行实时监测,以洞悉细胞,分子和空间异质性。我们的分析表明,GBM诱导的GAM极地和吸引和激活GAM的能力(与患者生存相关的特征),GBM患者的定位异质性。差异基因表达分析,原始肿瘤样品的免疫组织化学以及斑马鱼中的敲除实验随后将LGALS 1鉴定为免疫抑制的主要调节剂。总的来说,我们的工作高光可以在临床上研究GAM-GBM相互作用
摘要具有数以千计的基因组关联研究对复杂特征鉴定的基因座,需要在体内模型系统中可靠,迅速推断大量候选基因的作用。基于F 0斑马鱼中的基于CRISPR/CAS9的功能屏幕代表这样的系统。然而,到目前为止使用的负面对照 - 包括加扰的指南RNA(GRNA),灭活的CAS9和假注射 - 不会引起与CRISPR/CAS9相同的细胞和有机反应,并且可能会加剧结论。在这里,我们表明,靶向KITA促进了成功的诱变,更高质量的成像数据以及病例和对照的有效分类的有效的光学预筛查。我们鉴定并测试了两个靶向具有类似高诱变效率和对色素作用的kita的GRNA,并且没有对心脏代谢性状的脱靶效应或主要影响。我们提出了几种方法,这些方法将得出有效的,公正的结论。
1生物学和化学系统研究所 - 生物学信息处理,德国Eggenstein-Leopoldshafen的Karlsruhe技术研究所; 2英国伯明翰大学医学与牙科科学学院代谢与系统研究所,英国伯明翰; 3澳大利亚布里斯班昆士兰州分子生物科学研究所; 4雀巢卫生科学研究所SA,EPFL创新公园,瑞士洛桑; 5德国Eggenstein- Leopoldshafen的Karlsruhe理工学院自动化和应用信息学研究所; 6德国卡尔斯鲁厄的Karlsruhe技术研究所应用物理学研究所; 7伊利诺伊大学伊利诺伊大学乌尔巴纳·坎普恩恩(Urbana-Champaign)物理系; 8德国Eggenstein-Leopoldshafen的Karlsruhe技术研究所纳米技术研究所