(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 2 月 5 日发布。;https://doi.org/10.1101/2025.02.05.636566 doi:bioRxiv preprint
摘要:基于氮的肥料代表了最常见的施肥工具,尤其是在农作物农业中使用的工具,尽管成本效率低,并且具有很高的负面环境影响。目前,关于尿素对人类健康的影响的信息仍然不足;然而,先前在动物的研究观察到,高尿素浓度暴露会损害包括大脑在内的不同组织。在几种脊椎动物中,与神经元细胞形成相关的关键因素由气体分子,一氧化氮(NO)表示,该因子通过一氧化氮合酶(NOS)的酶促活性从精氨酸转化为瓜氨酸的转化而得出。在斑马鱼中,已知NOS基因的三种不同同工型:NOS1,NOS2A和NOS2B。在本研究中,我们表明NOS1代表了斑马鱼发育的所有胚胎阶段,在大脑和脊髓中具有稳定的高表达的独特同工型。然后,通过使用特定的转基因斑马鱼Tg(HUC:GFP)来标记神经元细胞,我们观察到NOS1在神经元中特异性表达。有趣的是,我们观察到,亚致死剂量的尿素暴露会影响细胞的增殖和表达NOS1的细胞数量,从而诱导凋亡。与未经治疗的动物相比,在尿素处理的动物中,没有观察到大脑没有降低的大脑水平。这一发现代表了第一个证据,表明尿素暴露会影响胚胎发育过程中神经元细胞形成的关键基因的表达。
摘要:在二十一世纪,工程纳米材料(ENM)吸引了兴趣的不断增长,在全球范围内彻底改变了所有工业部门。不断扩大的世界人口和新的全球政策的实施越来越多地推动社会迈向生物经济,重点是促进采用基于生物的纳米材料,这些纳米材料功能性,具有成本效益,并且潜在地暗示在不同领域,包括医疗领域,包括医疗领域。这项研究集中于基于生物的和合成起源的二氧化硅纳米颗粒(SIO 2 -NPS)。SiO 2 -NP由二氧化硅组成,二氧化硅是地球上最丰富的化合物。由于其特征和生物相容性,它们在许多应用中广泛使用,包括食品工业,合成过程,医学诊断和药物输送。使用斑马鱼胚作为体内模型,我们评估了与商用的亲水性粉丝NPS(SIO 2 -AerosiL200)相比,稻壳(Sio 2 -RHSK NPS)的无定形二氧化硅NP的影响。我们评估了在组织化学和分子水平上胚胎暴露于两种纳米颗粒(NP)的结果,以评估其安全性,包括发育毒性,神经毒性和促炎潜能。结果显示了两种二氧化硅NP之间的差异,这表明基于生物的SIO 2 -RHSK NP不会显着影响中性粒细胞,巨噬细胞或其他先天免疫系统细胞。
摘要:人为干预对环境健康产生了损害,增强了生态系统的降解,以及释放到自然的化学污染物的数量。因此,环境评估范围内的研究领域和监测(例如生态毒理学)有助于确定污染物的毒性潜力。一种被称为斑马鱼(Danio rerio)的小型塞普林剂,其使用呈指数成长,是科学研究的替代脊椎动物模型,主要用于评估环境风险。该物种在实验室中表现出几个优势,除了表现出多生物毒性的多种标志物外。因此,本综述旨在提出与该物种合作的主要特征和优势,并显示与涉及斑马鱼毒性生物标志物的生态毒理学有关的研究。结果表明,在环境风险分析中采用该物种的渐进趋势,在评估一系列化学污染物的毒性水平中,这是一种越来越推荐的物种。未来技术的发展必须有助于科学进步,从而使该模型生物的潜在应用变得更加广泛,这无疑将有助于弥合各个研究领域的知识差距。
1 密歇根大学计算医学与生物信息学系,密歇根州安娜堡,美国 2 密歇根大学儿科系,密歇根州安娜堡,美国 3 美国国家心肺血液研究所内部研究部人口科学分部,73 Mt. Wayte, Suite #2, Framingham, MA, 01702, 美国 4 斯坦福大学医学院血管外科分部,加利福尼亚州帕洛阿尔托,94305,美国 4 密歇根大学内科系,密歇根州安娜堡,美国 6 密歇根大学内科系心血管医学分部,密歇根州安娜堡,美国 7 挪威科技大学 NTNU 公共卫生与护理系 KG Jebsen 遗传流行病学中心,特隆赫姆,7030,挪威 8 挪威科技大学公共卫生与护理系 HUNT 研究中心,挪威科技大学,挪威勒万厄尔 7600 9 特隆赫姆大学医院圣奥拉夫医院医学诊所,挪威特隆赫姆 7030 10 波尔多大学,法国国家健康与医学研究院,波尔多人口健康研究中心,UMR 1219,F-33000 波尔多,法国 11 迈克尔·克雷森茨下士 VA 医学中心,美国宾夕法尼亚州费城 12 宾夕法尼亚大学佩雷尔曼医学院外科系,美国宾夕法尼亚州费城 13 宾夕法尼亚大学佩雷尔曼医学院遗传学系,美国宾夕法尼亚州费城 14 华盛顿大学生物统计学和医学系心血管健康研究组 15 格罗宁根大学,UMCG,眼科系,荷兰格罗宁根
简单的摘要:母体提供的mRNA和蛋白质(称为母体因素)由斑马鱼中的14,000多个编码基因产生。他们在控制卵母细胞的形成和早期胚胎的发展方面扮演着独家角色。这些母体因素还可以补偿其相应的二胞基因产物功能的丧失。因此,消除母体和二氏基因产物对于阐明超过一半的斑马鱼基因的功能至关重要。但是,灭活母体因素总是具有挑战性的,因为传统的遗传方法在技术上要求或耗时。我们最近的工作建立了一种快速的条件敲除方法,以产生一个鱼类中产生母体或母体和鸡叶突变体。在这里,我们进一步测试了这种方法的可行性,以同时淘汰具有功能性冗余的两个母体基因。作为原理的证明,我们第一次成功地为DVL2和DVL3A基因生成了双母体突变体胚胎。通过这种方法获得的突变胚胎中的细胞运动缺陷模仿了在先前报道的镶嵌策略之后进行了几个月耗时筛查后产生的真正突变胚胎。因此,该方法有可能加快寄生虫基因的功能研究。
摘要 淀粉样蛋白前体 (APP) 是一种富含大脑的单次跨膜蛋白,可水解加工成多种产物,包括淀粉样蛋白-β (A b ),它是阿尔茨海默病 (AD) 的主要驱动因素。尽管 APP 的过度表达和外源性 A b 都会导致睡眠变化,但 APP 加工是否在调节睡眠中起内源性作用尚不清楚。在这里,我们证明 APP 加工成 A b 40 和 A b 42 在斑马鱼中是保守的,然后描述了功能丧失的 appa 和 appb 突变体的睡眠/觉醒表型。appa 突变的幼虫觉醒活动减少,而缺乏 appb 的幼虫夜间睡眠时间缩短。用 g -分泌酶抑制剂 DAPT 治疗也缩短了夜间睡眠时间,而 BACE-1 抑制剂 lanabecestat 延长了睡眠时间。脑室内注射 P3 也缩短了夜间睡眠时间,这表明 Appb 蛋白水解加工的适当平衡是斑马鱼维持正常睡眠所必需的。
环境中纳米塑料(NP)和微塑料(MP)的存在被认为是全球规模的问题。由于其疏水性和较大的特异性表面,NP和MP可以吸附其他污染物,作为多环芳烃(PAHS),并调节其生物利用度和危害。成年斑马鱼暴露3和21天,至:(1)0.07 mg/l NP(50 nm),(2)0.05 mg/l MPS(4.5μm),(3)MPS,带有水的油的吸附油化合物(WAF)的浓度(WAF)的浓度(WAF),均与含有戒指的香油(MPS-WAF),(MPS-WAF),(MPS-WAF),(4)MPS(4)MPS(4) (MPS-B(A)P),(5)5%WAF和(6)21μg/L B(a)p。在接近微绒毛的肠腔中可以看到类似NP的电义颗粒。MP在肠腔中大量发现,但未内化到组织中。21天后,NPS引起CAT的显着下调,GPX1A和SOD1的上调,而MPS上调CYP1A并增加了肝脏真空的患病率。在ill中未观察到组织病理学改变。在这项研究中,受污染的MPS并未增加斑马鱼的PAH水平,但结果强调了塑料颗粒的潜在差异影响,这取决于其大小,因此必须紧急解决真实环境NP和MPS的生态毒理学影响。
摘要:转录因子 MEF2C 在神经元、心脏、骨骼和软骨的分子过程以及颅面发育中至关重要。MEF2C 与人类疾病 MRD20 有关,该疾病患者的神经元和颅面发育异常。通过表型分析,对斑马鱼 mef2ca;mef2cb 双突变体进行了颅面和行为发育异常分析。采用定量 PCR 检测突变幼虫中神经元标记基因的表达水平。通过 6 dpf 幼虫的游泳活动分析了运动行为。我们发现 mef2ca; mef2cb 双突变体在早期发育过程中表现出几种异常表型,包括已经在携带每个旁系同源物突变的斑马鱼中描述的表型,以及 (i) 严重的颅面表型(包括软骨和真皮骨结构)、(ii) 由于心脏水肿破坏而导致的发育停滞和 (iii) 行为的明显改变。我们证明在斑马鱼 mef2ca ; mef2cb 双突变体中观察到的缺陷与之前在 MEF2C 缺陷小鼠和 MRD20 患者中描述的缺陷相似,证实了这些突变系可作为 MRD20 疾病研究、新治疗靶点识别和可能的挽救策略筛选的模型。
药理学和毒理学是理解化学和生物学之间关系的更广泛努力的一部分。虽然生物医学必然侧重于具体案例,通常与人类有直接关系,但寻求更系统的方法来描述小分子和其他干预措施如何影响健康和疾病确实具有优势。在此背景下,斑马鱼现已成为具有代表性的可筛选脊椎动物,并且通过基因组编辑和自动表型分析的不断进步,开始解决一些生物医学问题的系统级解决方案。在临床前模型生物中整合信息内容的更广泛努力以及包括闭环深度学习在内的严格分析的结合,将有助于创建系统药理学和毒理学,并能够围绕社会需求不断优化化学生物相互作用。在这篇评论中,我们概述了朝着这一目标取得的进展。