摘要:柔性集成光子学是一项快速兴起的技术,在柔性光互连、共形多路复用传感、健康监测和生物技术领域有着广泛的应用前景。开发机械柔性集成光子学的一大挑战是集成光子电路中性能优越的功能组件。在这项工作中,基于多中性轴机械设计和单片集成技术,设计和制造了这种电路的几个基本柔性无源器件。波导的传播损耗计算为 4.2 dB/cm。此外,我们展示了用于 1.55 µ m 的微环谐振器、波导交叉、多模干涉仪 (MMI) 和马赫-曾德尔干涉仪 (MZI),它们都表现出优异的光学和机械性能。这些结果代表着向进一步探索完整的柔性光子集成电路迈出了重要一步。
Perry,S。P.,Abaied,J。,&Wu,D.J.,Doriscar,J.E。(2025)。美国的种族社会化。心理学年度审查。Wu,D.J.,Gibson,T.M.,Ziegenbein,L.M.,Phillis,R.W.,Zehnder,C.,Connor,E.A。,&Dasgupta,N。(2024)。一种公共社会疫苗:基于身份的学习社区干预增强了第一代大学生在生物科学中的生活经验和成功。科学报告,14,10163。Perry,S。P.,Wu,D.J.,Sánchez,S.,Skinner-Dorkenoo,A.L.,Abaied,J.,Waters,S.F。,&Osnaya,A。(2024)。在讨论任务中,白人父母的种族社会化信息预示着白人儿童亲白人偏见的减少。发展心理学。●媒体报道:WBEZ芝加哥Wu,D。J.,Syropoulos,S.,Rivera-Rodriguez,A.,Dasgupta,N。(2023)。从模型少数派到黄色危险:威胁感知和厌恶如何预测19日期间的反亚洲偏见。社会和人格心理学指南针,E12833。https://doi.org/10.1111/spc3.12833●媒体报道:SPSSI Forwardhttps://doi.org/10.1111/spc3.12833●媒体报道:SPSSI Forward
便携式、经济高效的气体传感器在众多环境、生物医学和工业应用中越来越受欢迎,但目前的设备仅限于专门的实验室,无法扩展到一般用途。在这里,我们展示了一种光子芯片上灵敏度为十亿分之一的折射率气体传感器,该光子芯片基于用中孔二氧化硅顶包层功能化的氮化硅波导。通过监测集成不平衡马赫-曾德尔干涉仪的输出光谱模式来检测低浓度化学蒸气,该干涉仪的一个涂层臂暴露在气体蒸气中。我们分别对丙酮、异丙醇和乙醇获得了 65 ppb、247 ppb 和 1.6 ppb 的检测限。据我们所知,我们的片上折射率传感器基于光子集成电路提供了前所未有的低气体浓度检测限。因此,我们的研究结果预示着用于现场实时环境监测和医疗诊断的紧凑、便携和廉价设备的实现。
摘要。已经开发了基于相干检测的低成本激光检测系统,即使在明亮的背景光中,也能够检测到弱,连续的激光源。该系统由Mach - Zehnder干涉仪组成,其中一个手臂用压电的镜子修饰,以调节路径长度。我们介绍了确定激光波长并扩展检测器视野的方法。为了扩大视野,将锥镜添加到系统中,而相机的额外使用则可以研究传入激光束的方向。通过使用压电镜的调制幅度估计来自三个不同激光器的波长。可以实现360度水平视场的初步结果,并且可以用估计的角精度为5度确定激光束的方向。此外,可以用10 nm的精度确定波长。系统在635 nm处将系统交易的灵敏度转换为较大的视野,而最终的检测灵敏度等于70 nW(或1μW·cm -2)。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.oe.60.2.027106]
judith Bellaiche,Swico Onur Boyman的主任,Uzh Alexandra Dhavernas von Elverfeldt的免疫学教授,LCATTERTON的高级顾问,Dhavernas AdvisoryStéphanieEngels的执行合伙人,Signium Harald的合伙人UBS AG Mike Martin的数字参与负责人,UzhNikeMöhle的健康寿命中心教授兼主任,副总裁Maria Olivares的副总裁和可持续性,Uzh Gabriele Siegert的主管,Uzh Gabriele Siegert的首席创新办公室,Uzh Adrian Sigrist的Uzh Adrian Sigrist总裁,Uzh Adrian Sigrath Atrra Stark Atrra Stark Atra Stark Atra Stark Atra Stark Atra stark Atra stark in ULRICH,UZH太空中心教授兼总监AndreasWallnöfer,Jeito Capital的合伙人Simon Wirth,公司发展,创新与转型的负责judith Bellaiche,Swico Onur Boyman的主任,Uzh Alexandra Dhavernas von Elverfeldt的免疫学教授,LCATTERTON的高级顾问,Dhavernas AdvisoryStéphanieEngels的执行合伙人,Signium Harald的合伙人UBS AG Mike Martin的数字参与负责人,UzhNikeMöhle的健康寿命中心教授兼主任,副总裁Maria Olivares的副总裁和可持续性,Uzh Gabriele Siegert的主管,Uzh Gabriele Siegert的首席创新办公室,Uzh Adrian Sigrist的Uzh Adrian Sigrist总裁,Uzh Adrian Sigrath Atrra Stark Atrra Stark Atra Stark Atra Stark Atra Stark Atra stark Atra stark in ULRICH,UZH太空中心教授兼总监AndreasWallnöfer,Jeito Capital的合伙人Simon Wirth,公司发展,创新与转型的负责
摘要:开发了一种基于微腔纤维马赫德 - Zhhnder干涉仪的新型无标签光纤生物传感器,并实际上证明了用于DNA检测的。使用偏置剪接标准通信单模纤维(SMF)制造生物传感器。传感器的光路径受偏置开放腔中液体样品的影响。在实验中,在折射率(RI)测量中实现了-17,905 nm/riU的高灵敏度。在此基础上,探针DNA(pDNA)使用APTES固定在传感器表面上,从而实现了捕获的互补DNA(cDNA)样品的实时监测。实验结果表明,生物传感器的高灵敏度为0.32 nm/fm,检测限为48.9 AM。同时,传感器具有高度可重复和特定的性能。这项工作报告了易于制造,超敏感和无标签的DNA生物传感器,该生物传感器在医学诊断,生物工程,基因识别,环境科学和其他生物领域中具有重要的潜在应用。
光学扫描全息图(OSH)可以应用于3D荧光成像。但是,由于需要相位变速器,2D机械扫描仪和干涉仪,OSH的光学设置变得复杂。尽管一动不动的光学扫描全息图(MOSH)可以提出问题,但尚未实现定量相成像(QPI),因为MOSH只能获得不可接受的全息图。如果实现了MOSH中的QPI,则可以将MOSH应用于各种应用程序。在这封信中提出了基于MOSH的QPI(MOSH-QPI)。此外,还提供了对OSH连贯模式的简单描述。在原则实验中,使用空间分开的相移技术来减少测量数量。通过测量Microlens阵列的相分布来确认MOSH-QPI的可行性。MOSH-QPI也用于测量实际样品,并将其结果与使用Mach-Zehnder干扰物的常规结果进行比较。
I。常规的台式光谱仪通常很大,并且仅限于实验室环境。随着综合光子学的发展,光谱仪的微型化导致了适用于实验室以外的更多应用,包括农业分析和水下研究[1],[2]。它还可以启用实验室芯片应用程序[3],[4],[5]。基于其工作原理,可以将集成光谱仪大致分为使用分散,窄带滤波,傅立叶变换或数值重建的类别[6]。第一个类别具有分散光学元件,它们在空间上分开不同的频率,包括echelle光栅[7]和阵列的波导格栅(AWG)[8],[9]。第二种类型使用窄带过滤器(例如环形分解器和马赫Zehnder干涉仪(MZI)[10],[11],[11],[12],选择性地将不同的光谱成分传输到不同的检测器。第三个通常称为傅立叶变换型体镜检查(FTS),其中通过在时间或空间域中转换干涉信息,使用傅立叶变形[13],[14],[15]获得频谱。最后一个类别采用了一系列具有不同光谱响应的组件,并从组合信号[16],[17]中重建光谱。它依赖于
我们提出了一种将传统光学干涉测量装置映射到量子电路中的方法。通过模拟量子电路,可以估计存在光子损失时马赫-曾德尔干涉仪内部的未知相移。为此,我们使用贝叶斯方法,其中需要似然函数,并通过模拟适当的量子电路获得似然函数。比较了四种不同的确定光子数状态(均具有六个光子)的精度。我们考虑的测量方案是计算干涉仪最终分束器后检测到的光子数量,并使用干涉仪臂中的虚拟分束器来模拟光子损失。我们的结果表明,只要光子损失率在特定范围内,所考虑的四种确定光子数状态中的三种可以具有比标准干涉极限更好的精度。此外,还估计了装置中四种确定光子数状态的 Fisher 信息,以检查所选测量方案的最优性。
摘要:在本文中,我们在理论上和实验上都研究了双峰干涉传感器的敏感性,其中干涉发生在两个具有不同特性的等离子模式之间,在同一物理波导中传播。与众所周知的Mach- Zehnder干涉测定法(MZI)传感器相反,我们首次表明双峰传感器的灵敏度与传感面积长度无关。通过将理论应用于组成的铝(AL)等离子条纹波导的集成等离子双峰传感器来验证这一点。使用不同长度的等离子条带进行了数字模拟的一系列这种双峰传感器,证明了所有传感器变体的散装折射率(RI)敏感性,证实了理论上的结果。还通过芯片级RI传感实验对三个制造的SU-8/Al Bimodal传感器进行了芯片级RI传感实验,以50、75和100 µm的血浆传感长度进行了实验验证。发现获得的实验性RI敏感性分别非常接近,等于4464、4386和4362 nm/riU,这证实了感应长度对双峰传感器敏感性没有影响。上述结果减轻了设计和光损失约束,为更紧凑,更强大的传感器铺平了道路,可以在超短声感应长度下实现高灵敏度值。