花青素(ACNS)是在许多红紫色水果,蔬菜和谷物中发现的一类类黄酮色素,由于其多种生物学特性,引起了人们的重大关注。由于它们的抗氧化剂和抗炎症活性,已经发现富含这些化合物的饮食的食用可对包括心血管和神经退行性疾病在内的众多病理学产生健康效果。但是,ACN的生物利用度低,在口服给药后限制了它们在人体中的分布,因此,其治疗用途是一个重大问题。为了应对这一挑战,已经提出了多种系统内的封装。在循环经济方法的更广泛看法下,本研究探讨了使用两种生物乳球分子(Zein and Starch)从紫色玉米蛋白棒中提取的ACN的封装,以形成微型和纳米结构。通过超级性能液相色谱分别与飞行器质谱仪,动态光散射和扫描电子显微镜分别耦合到超级性能液相色谱,以封装效率,大小和形态来表征所得的输送系统。基于Zein的纳米颗粒和淀粉的微观结构均显示出令人鼓舞的胶体稳定性和封装效率。然而,只有基于Zein的纳米颗粒在人肠细胞中没有细胞毒性表现出,并且可以代表研究ACNS生物利用度潜在增强的起点。
Rojas-Lema,Gomez-Caturla,J.,Balart,R.,Arrieta,M.P。,&Garcia-Sanoguera,D。(2024)。用适合注射成型的甘油增塑的热塑性锌生物聚合物的开发和表征。工业作物和产品,218,119035。https://doi.org/10.1016/j.indcrop.2024.119035
摘要:由于其独特的结构和功能功能,纳米材料被广泛投资于广泛的工业领域的潜在应用。在这种情况下,鉴于蛋白质的丰度,无毒和稳定性,基于蛋白质的纳米颗粒为封装和保护提供了一种有希望的可持续方法,并且可以用于工程的纳米载体中,这些纳米载体能够按需释放活跃的化合物。Zein是一种从玉米中提取的植物蛋白,它具有生物相容性,可生物降解和两亲性。目前有几种方法和技术参与基于Zein的纳米颗粒制备,例如反应降水,喷雾干燥,超临界过程,共凝聚和乳液程序。由于其特殊的特征,基于Zein的纳米颗粒被广泛用作靶向应用领域的活性化合物的纳米载体,例如药物输送,生物成像或软组织工程,如其他人所报道。这篇综述的主要目的是调查基于Zein的纳米载体在不同的高级应用中的使用,包括食品/食品包装,化妆品和农业,这吸引了研究人员的努力,并利用Zein NP在文化遗产领域的未来潜在发展,这仍然是相对未探索的。此外,提出的概述着重于几种制备方法(即反溶剂过程,Spry Drying),将不同的分析方法与NPS的结构和功能特性相关联,及其能够作为生物活性化合物的载体,以保存其活性并在特定的工作条件下释放。
摘要:基于聚合物的除草剂纳米载体表现出了提高除草剂功效和环境安全的潜力。这项研究旨在开发,表征和评估对草甘膦基于天然的聚合物纳米系统的靶向和非目标生物的毒性。聚合物(例如壳聚糖(CS),Zein(Zn)和木质素(LG))用于合成中。纳米系统的大小,表面电荷,多分散指数,封装效率,对杂草物种的毒性(Amaranthus hybridus,ipomoea grandifolia和eleusine indica)以及综述(RR)Ready(RR)作物,土壤呼吸和土壤呼吸和酶活性。与商业草甘膦(40%)相比,最稳定的系统是Zn与交联的poloxamer(PL)的组合,杂草控制功效较高(90-96%)。对I. Grandifolia和E. Indica没有观察到没有改善。在RR作物,土壤呼吸或土壤酶中未观察到草甘膦毒性,表明在这些模型中没有纳米成型的毒性作用。Zn- PL系统可以是使用环保材料的草甘膦递送的有希望的替代方法,并提高了农业杂草控制的效率。关键字:纳米糖剂,锌,木质素,杂草控制,可持续性
24. Arida E、Ashari H、Dahruddin H、Fitriana Y、Hamidy A、Haryoko、Irham M、Kadarusman、Riyanto A、Wiantoro S、Zein MSA、Apandi、Krey F、Mulyadi、Sauri S、Saidin、Suparno、Melmambessy EHP、Ohee HL、Saidin、Salamuk A、Supriatna N、Suruwaky AM Warikar EL、Wahyudi、Wikanta H、Yohanita AM、Slembrouck J、Legendre M、Gaucher P、Cochet C、Delrieu-Trottin E、Thébaud C、Mila B、Fouquet A、Borisenko A、Steinke D、Hocdé R、Semiadi G、Pouyaud L、Hubert N (2021) 通过 DNA 条形码探索鸟头半岛(印度尼西亚西巴布亚)的脊椎动物群。分子生态资源, 21: 2369-2387 (IF: 6.286)。
第 13 章 无线传感器网络在船舶监控系统中的应用 Hussein Kdouh、Gheorghe Zaharia、Christian Brousseau、Hanna Farhat、Guy Grunfelder、Ghaïs El Zein 雷恩电子与电信研究所,UMR CNRS 6164 雷恩,法国 1. 简介 近年来,无线传感器网络 (WSN) 引起了全世界的关注,尤其是随着微机电系统 (MEMS) 技术的普及,这促进了智能传感器的发展。智能传感器是由一个或多个传感器、存储器、处理器、电源和无线电单元组成的小型设备。它们可以感知环境、测量并通过无线方式将数据发送到控制单元进行进一步处理和决策。 WSN 在许多应用领域具有巨大潜力,例如栖息地监测 (Polastre 等,2004)、入侵检测和目标跟踪与监视 (Arora 等,2004)、海洋学 (Tateson 等,2005)、环境监测 (Barrenetxea 等,2008a、2008b;Padhy 等,2005;Selavo 等,2007)、结构健康监测 (Paek 等,2005)、基础设施监测 (Stoianov 等,2007)、精准农业 (Langendoen 等,2006)、生物医学健康监测 (Gao 等,2005) 以及危险环境探索和地震感知 (Werner-Allen 等,2006)。结构,包括桥梁、建筑物、水坝、管道、飞机、船舶等,都是确保社会
抽象目标小麦已成为全球主要主食。我们研究了定义的促炎性饮食蛋白,小麦淀粉酶胰蛋白酶抑制剂(ATI),在实验性自身免疫性脑炎(EAE)中,通过Toll-Like受体4激活肠髓样细胞(EAE),一种多发性硬化症模型(MS)。设计EAE是在标准化的饮食方案中诱导的,具有麸质/ATI含量的标准化饮食方案。小鼠接受了定义的碳水化合物和蛋白质(酪蛋白/Zein)含量的无麸质和无ATI饮食,补充了:(a)25%的面筋和0.75%的ATI; (b)25%面筋和0.19%ATI或(C)1.5%纯化ATI。分析了饮食ATI对临床EAE严重程度,髓样细胞和淋巴细胞的肠道,肠系膜淋巴结,脾和中枢神经系统(CNS)亚群的影响。比较了来自MS和健康对照患者的外周血单核细胞的激活。与其他饮食方案(包括单独的麸质)相比,与小鼠相比,饮食中剂量依赖性剂量依赖性地依赖性地引起了EAE临床评分的明显更高。这是由数量增加和促炎性肠道,淋巴结,脾脏和CNS髓样细胞以及中枢神经系统浸润性脑源性T-淋巴细胞的激活来介导的。预计,ATI激活了来自MS和健康对照患者的两名患者的外周血单核细胞。结论饮食小麦ATI激活鼠和人髓样细胞。这些结果支持肠道轴在炎症性中枢神经系统疾病中的重要性。平均基于人小麦的饮食中的ATI量引起了轻度的肠炎,该炎症被传播到肠外部位,导致CNS炎症加剧,EAE中临床症状的恶化。
研究重点 拥抱第四次工业革命 17 这是我们所知的世界的末日 18 人工智能:第四次工业革命的神话还是现实?20 非洲企业面临被淘汰的威胁 22 CEFIM 在微电子研究领域处于领先地位 23 利用企业架构应对第四次工业革命的复杂性 24 MultiChoice 机器学习主席 26 Absa 数据科学主席 27 大数据和数据科学研究所 28 DRS 网络安全主席 29 智能交通系统 30 监控公路和铁路基础设施 32 多式联运建模 35 用于规划交通系统的更好数据 37 使用数据科学分析废物收集活动 38 柔性路面层的数值建模 41 车辆动力学和移动性研究势头强劲 43 为采矿业开发基于研究的解决方案 46 岩石工程专业知识带来前沿研究 47 沉浸式技术增强采矿工程研究 50 研究团队调查 ThermoSMART 设备的效率和功能 52 玉米醇溶蛋白自发微胶囊化香叶醇 54 从微藻生产生物燃料作为化石燃料的替代品 55 通过在公共水龙头实施用户身份验证来节约用水 57