1。学生能够测试基本的离散电子组件,并能够收集有关其性能的数据2。学生能够在团队中工作以实现一个简单的电子工程项目3。学生能够设计给定电路(模拟移动机器人)主题1。Ni Elvis II的简介和测试电子组件2。测试二极管,齐纳和LED 3。组成和测试波整流器系统4。组成和测试晶体管5。编写和测试JFET 6。组成和测试MOSFET 7。编写和测试SCR8。Mandiri实践a。遵循机器人b。寻求机器人(选择一个,第3至5 MHS。)直接评估
摘要量子系统的基础状态的快速而忠实的准备是在基于量子的技术领域中的多个应用程序的具有挑战性但至关重要的任务。的消毒将允许的最大时间窗口限制为实验,以忠实地达到此类所需的状态。这在具有量子相变的系统中特别重要,其中消失的能量差距挑战了绝热的基态制备。我们表明,由在两个不同的外部可调参数下的时间演化组成的BANG-BANG协议允许在进化时间中进行高实现基态制备,而不必应用标准最佳控制技术所需的时间,例如切碎 - 常发送量子量子基量子量子量子。此外,由于它们的变量数量减少,此类BANG -BANG协议非常适合优化任务,从而降低了其他最佳控制协议的高计算成本。我们通过两个范式模型(即Landau – Zener和Lipkin – Meshkov – Glick模型)对这种方法进行基准测试。非常重要的是,我们发现后一个模型的关键基态,即其在临界点处的基态可以在总进化时间内以高填充率制备,该缩放比消失的能量差距慢。
模块 I:电子学简介 [12 小时] 电子设备及其应用、信号、模拟和数字信号、放大器。线性波形整形电路:RC LPF、积分器、RC HPF、微分器。半导体特性、固体分类、硅能带、本征和非本征半导体、半导体电流、霍尔效应、扩散电流、漂移电流、迁移率和电阻率。模块 II:半导体二极管 [12 小时] pn 结理论、V-I 特性、负载线分析、二极管等效电路、二极管电路分析、过渡电容和扩散电容。二极管电路的应用;整流器、限幅器、钳位器。滤波电路、特殊用途二极管:齐纳二极管、LED、光电二极管、隧道二极管、变容二极管、肖克利二极管。激光基础知识。模块 III:BJT 和 FET [12 小时]
电子邮件:1 s.laafar@gmail.com 摘要 本文讨论了 CoolMOS 功率晶体管的宏建模。正在建立一个能够提供准确结果的新型功率 CoolMOS 晶体管宏模型。它基于将 CoolMOS 功率晶体管细分为本征 MOSFET、JFET、齐纳二极管和电压控制电压源。所有这些组件都包含在一个子电路中,以描述功率 CoolMOS 晶体管的饱和和准饱和等效应。本文将在介绍新的子电路模型的同时清楚地解释这些影响以及参数提取过程。通过将所提出的模型在 PSpice 下的仿真结果与制造商提供的数据表结果以及英飞凌科技提供的模型进行比较,验证了所提出的模型的有效性。我们的模型为直流特性的所有工作区域提供了准确的描述。它给出的输出特性平均误差百分比小于 5.5%。
在旋转框架中观察到的两级系统的共振横向驾驶在拉比频率下两个退化状态,这是量子力学中出现的等效性。尽管成功地控制了自然和人工量子系统,但由于不循环术语等非理想性,可能会出现某些局限性(例如,可实现的栅极速度)。我们引入了一个由两个电容耦合的透射量子台形成的超导复合量子轴(CQB),其具有一个小的避免的横穿(小于环境温度)在两个能级之间。我们使用仅基带脉冲,非绝热过渡和连贯的Landau-Zener干扰来控制这种低频CQB,以实现快速,高效率,单Qubit的操作,其Clifford Fidelities超过99.7%。我们还在两个低频CQB之间执行耦合的量子操作。这项工作表明,使用仅基带脉冲可行,对低频量子的通用非绝热是可行的。
终端设备 (EE)(例如机顶盒 (STB)、智能扬声器、电子仪表等)需要成本和空间均经过优化的电源路径保护设计。传统设计由分立元件(例如 MOSFET、保险丝、PTC、齐纳二极管、电阻器、电容器等)组成,用于打开和关闭电源轨。这些设计虽然简单,但通常在物理和电气上尺寸过大,并且可能缺乏保护功能。相比之下,带有集成 FET 的电子保险丝(例如 TPS25961)可以提供类似的功能,同时提供额外的系统优势,包括浪涌电流限制和更小的设计尺寸。本应用简介重点介绍了使用 TPS25961 相对于分立设计的优势。TPS25961 是一款 19 V 2 A 电子保险丝,采用 2 mm × 2 mm 封装,具有过压、过流和短路保护功能。该设备非常适合个人电子产品和工业电源路径保护趋势,这些趋势要求设计具有宽电压范围支持、最低 20 V 绝对最大值支持以承受瞬变和小于 2 A 的电流限制支持。
放大器将以等于正电源的共模输入电压工作。然而,在此条件下,增益带宽和斜率可能会降低。当负共模电压摆动至负电源的 3V 以内时,可能会出现输入失调电压增加的情况。LF411 由齐纳参考偏置,允许在 g 4�5V 电源上正常电路工作。低于这些的电源电压可能会导致较低的增益带宽和斜率。LF411 将在整个温度范围内驱动 2k X 负载电阻至 g 10V。如果放大器被迫驱动更大的负载电流,但是,在负电压摆动上可能会出现输入失调电压增加,并最终在正向和负向摆动上达到有效电流限制。应采取预防措施,确保集成电路的电源永远不会反转极性,或者不会无意中将设备反向安装到插座中,因为无限电流通过 IC 内部产生的正向二极管产生的浪涌可能会导致内部导体熔断,从而导致设备损坏。
单元 1:组件 14 小时 组件简介 – 无源组件和有源组件 – 电阻器、标准化、颜色编码技术、电阻器类型 – 电容器、电容器类型 – 电感器、电感器类型、特性和规格、变压器、变压器类型。 二极管 - 原子理论 – 硅和锗的结构 – 导体、半导体、绝缘体的能带图 – 本征和非本征半导体 – PN 结二极管 – 正向和反向偏置 PN 结的特性。 单元 2:特殊二极管及其应用 8 小时 特殊二极管 – 齐纳二极管 – 发光二极管 (LED) – 光敏二极管 (LDR)。 整流器 – 半波和全波(桥式和中心抽头)整流器 – 纹波系数 – 整流器的效率和滤波电路。第 3 单元:晶体管和偏置方法 17 小时 双极结型晶体管 – 晶体管结构 – PNP 和 NPN 晶体管 – 工作模式 – 共基极配置 (CB)、共发射极配置 (CE)、共集电极配置 (CC) – 晶体管参数 – α 和 β 之间的关系 – 偏置方法 – 固定偏置 – 集电极-基极偏置 – 发射极偏置场效应晶体管 – FET 的分类 – BJT 和 JFET 的比较研究 – FET 的优点和缺点 – JFET 的结构 – JFET 特性 – MOSFET(增强和耗尽)
我们提出了一种用于电刺激周围神经的无线、完全可植入设备,该设备由供电线圈、调谐网络、齐纳二极管、可选刺激参数和刺激器 IC 组成,全部封装在生物相容性硅胶中。13.56 MHz 的无线射频信号通过片上整流器为植入物供电。ASIC 采用台积电的 180 nm MS RF G 工艺设计,占地面积不到 1.2 平方毫米。该 IC 通过片上只读存储器实现外部可选的电流控制刺激,具有 32 个刺激参数(90 – 750 μA 幅度、100 μs 或 1 ms 脉冲宽度、15 或 50 Hz 频率)。IC 使用 8 位二进制加权 DAC 和 H 桥生成恒定电流波形。在最耗电的刺激参数下,刺激脉冲期间的平均功耗为 2.6 mW,电能传输效率约为 5.2%。除了台式和急性测试外,我们还在两只大鼠的坐骨神经上长期植入了两种版本的设备(一种是带导线的设计和一种是无导线的设计),以验证 IC 和整个系统的长期疗效。无导线设备的尺寸如下:高 0.45 厘米,长轴 1.85 厘米,短轴 1.34 厘米,带导线的设备尺寸类似
a. 具体教学成果 成功完成本课程后,学生将: 1.解决涉及理想运算放大器概念的问题并分析包含理想运算放大器的电路 2.解决涉及有限开环增益对电路性能的影响的问题 3.解决涉及理想二极管概念和结型二极管终端特性的问题。 4.分析和合成由电阻器、独立电流和电压源以及理想二极管组成的分段线性电路 5.执行二极管电路的分析。推导并理解小信号二极管模型及其应用 6.应用反向击穿区和齐纳二极管中的操作 7.分析和设计整流器、峰值检测器等。 8.讨论增强型 MOSFET 的结构和物理操作 9.分析直流 MOSFET 电路。偏置 MOSFET 以进行分立电路和 IC 设计 10. 推导并理解小信号模型及其参数 11. 根据 BJT 的操作解决问题 12. 绘制 BJT 的相关电压-电流特性 13. 执行晶体管电路的直流分析 14. 推导并理解混合模型及其参数 15. 偏置 BJT 以进行分立电路和 IC 设计 16. 能够应用概率和统计知识来解决电气工程问题。b. 明确指出标准 3 中列出的哪些学生成果或任何其他成果由课程解决。在本课程中,学生必须展示 (a) 应用数学、科学和工程知识的能力 (X) (b) 设计和进行实验(模拟)以及分析、解释数据的能力 (N/A)