1 格罗宁根大学泽尼克先进材料研究所,Nijenborgh 4, 9747 AG 格罗宁根,荷兰 2 桑迪亚国家实验室,新墨西哥州阿尔伯克基 87185,美国 3 劳伦斯利弗莫尔国家实验室,加利福尼亚州利弗莫尔 94551,美国 4 斯坦福大学,斯坦福,加利福尼亚州 94305,美国 5 剑桥大学工程实验室,剑桥 CB2 1PZ,英国 6 埃因霍温理工大学机械工程系,埃因霍温 5600 MB,荷兰 7 IMDEA 材料研究所,C / Eric Kandel 2,E-28906 马德里,西班牙 8 马德里理工大学材料科学系,ETS de Ingenieros de Caminos,E-28040 马德里,西班牙 9 辛辛那提大学,俄亥俄州辛辛那提45221,美国 10 苏黎世联邦理工学院,CH — 8092 苏黎世,瑞士 11 加州理工学院,帕萨迪纳,CA 91125,美国 12 洛斯阿拉莫斯国家实验室,洛斯阿拉莫斯,新墨西哥州 87522,美国 13 不列颠哥伦比亚大学物理与天文系和量子物质研究所,温哥华 BC V6T 1Z1,加拿大 14 伦敦大学学院,Gower Street,伦敦 WC1E 6BT,英国 15 桑迪亚国家实验室,利弗莫尔,CA 94551,美国 16 先进材料模拟跨学科中心(ICAMS),波鸿鲁尔大学,D-44801 波鸿,德国 17 普渡大学材料工程学院和 Birck 纳米技术中心,西拉斐特,印第安纳州 47907,美国 18 系明尼苏达大学航空工程与力学系,美国明尼苏达州明尼阿波利斯 55455
相比显微镜(PCM),由1930年代的Frits Zernike发明[1]在生物学和医学研究中至关重要,特别是在观察其自然状态的活细胞而没有染色的情况下。在PCM中,样品衍射的光会干扰未改变的光,形成了对比图像,可以观察到有关样品的相位信息。然而,由于其内在的光环和阴影伪影[2],这种成像过程没有定量。定量相成像(QPI)是可取的,因为它可以提供有关Sample的光学特性的更精确的信息。通常,QPI系统很复杂,需要专业知识才能实用。因此,有必要在保持其易于使用的同时提高PCM的定量性。改善PCM的一种方法是修改其硬件设置,尤其是照明和相位调节,以减少工件并改善定量准确性。Maurer等。[3]采用随机点相掩模来抑制光环和阴影效应。然后Gao等人扩展了这个想法。[4],其中使用了具有三个相移位置的可旋转相板。通过相移,他们实现了定量相测量,但准确性受到限制。在空间光干扰显微镜(Slim)[5]中,实现了一种相似的相移技术,但通过具有空间光调制器(SLM)的附加模块实现了,从而实现了定量相成像。除了硬件修改外,还开发了纯粹的计算方法。Yin等。Yin等。这些方法对PCM的光学特性进行了建模,并且通过优化解决反向成像问题来实现相位重新。[6]开发了一个线性想象模型,该模型允许在弱相范围内进行相位检索。最近,我们提出了一种基于建模不相干照明的方法,其中在πrad的明确相位范围内的相位恢复
1 格罗宁根大学泽尼克先进材料研究所,Nijenborgh 4, 9747 AG 格罗宁根,荷兰 2 桑迪亚国家实验室,新墨西哥州阿尔伯克基 87185,美国 3 劳伦斯利弗莫尔国家实验室,加利福尼亚州利弗莫尔 94551,美国 4 斯坦福大学,斯坦福,加利福尼亚州 94305,美国 5 剑桥大学工程实验室,剑桥 CB2 1PZ,英国 6 埃因霍温理工大学机械工程系,埃因霍温 5600 MB,荷兰 7 IMDEA 材料研究所,C / Eric Kandel 2,E-28906 马德里,西班牙 8 马德里理工大学材料科学系,ETS de Ingenieros de Caminos,E-28040 马德里,西班牙 9 辛辛那提大学,俄亥俄州辛辛那提45221,美国 10 苏黎世联邦理工学院,CH — 8092 苏黎世,瑞士 11 加州理工学院,帕萨迪纳,CA 91125,美国 12 洛斯阿拉莫斯国家实验室,洛斯阿拉莫斯,新墨西哥州 87522,美国 13 不列颠哥伦比亚大学物理与天文系和量子物质研究所,温哥华 BC V6T 1Z1,加拿大 14 伦敦大学学院,Gower Street,伦敦 WC1E 6BT,英国 15 桑迪亚国家实验室,利弗莫尔,CA 94551,美国 16 先进材料模拟跨学科中心(ICAMS),波鸿鲁尔大学,D-44801 波鸿,德国 17 普渡大学材料工程学院和 Birck 纳米技术中心,西拉斐特,印第安纳州 47907,美国 18 系明尼苏达大学航空工程与力学系,美国明尼苏达州明尼阿波利斯 55455
现代物理学的最新发展表明,量子关联(例如量子纠缠)及其与量子相干性的关系在理解各种物理系统的性质方面发挥着重要作用。相干性不仅在经典理论(例如射线光学)中研究,而且在各种量子系统中得到讨论,例如与量子信息论相关的系统。1938 年,Zernike 首次在经典场传播理论领域引入了相干度的概念 [1]。接下来在 1950 年,Hanbury Brown 和 Twiss 研究了恒星干涉仪系统中的高阶相干性 [2]。量子相干理论由 Glauber [3,4] 和 Sudarshan [5] 于 1963 年提出,随后由 Metha 和 Sudarshan [6] 于 1965 年进一步发展。另一方面,我们可以在 [7] 和 [8,9] 中分别找到对经典和量子相干理论的详尽介绍。量子相干理论在量子光学领域的研究中得到了广泛的应用 [3,4]。近年来,人们在各种模型中研究了量子相干性和纠缠之间的关系,包括描述高 Q 腔中原子集合的模型 [10]、光机械系统 [11]、两个强耦合的玻色子模式 [12] 或三模光机械系统 [13]。纠缠系统在量子信息论中有着各种实现,特别是在量子通信、量子密码学 [14] 和量子计算 [15–22] 中。最大或强纠缠态在量子隐形传态[23-26]或安全量子通信[27,28]等过程中起着重要作用。因此,加深对纠缠性质及其与其他形式的量子关联和相干性的关系的认识仍然至关重要。因此,在我们的研究中,我们不仅会考虑纠缠和相干之间的关系,还会考虑状态的混合性。描述纠缠和混合性[29-35]或相干性和混合性[36-41]或相干性的量之间的相互关系
来自理事会 亲爱的博士后同仁们, 在去年结束之际,我们向我们的前任大使告别: - Julian Koellermeier 现在是根特大学的助理教授,以及 - Sonja Billerbeck,她已加入伦敦帝国理工学院担任副教授。 我们祝愿他们在新的冒险中一切顺利,并对他们对我们理事会的所有支持和贡献表示衷心的感谢。 这意味着我们欢迎新大使加入我们的理事会: - 来自泽尼克先进材料研究所的 Dina Maniar,以及 - 来自 Stratingh 研究所的 Michael Lerch。 此外,Sina Goetzfried 和 Matthijs Tadema 也在本月加入了我们的博士后理事会。 在我们的网站上了解有关他们的更多信息 - 如果您觉得受到启发,也请加入我们! 展望未来,我们很高兴地宣布我们的职业系列活动今年将回归。 第一场活动将侧重于引导向工业职位的过渡,将于 3 月 6 日举行 - 请保存这个日期! 更多详细信息将很快公布。此外,大学正在筹备资助周,帮助早期职业研究人员了解有哪些资助机会 - 日期定于 3 月 31 日和 4 月 1 日 - 敬请期待更多详细信息。 同时,请查看最初为博士生开发的职业前景系列,现在也向博士后开放。该计划内容丰富,包括为学术界内外职业生涯做准备的课程和研讨会。 有些课程需要参加费用,但不要忘记,作为博士后,您有个人发展和培训预算。如果您有兴趣使用这笔预算,请联系 Wesley Maynard。 谨致问候,博士后委员会
80 年代初期,D. Dilworth 就提出了他对人工智能在镜头设计中的看法 [1]。他谈到了当时他的公司采用的两种主要方法。第一种是“自然语言界面”,第二种是将人工智能用作专家系统。第一种方法与我们实际的人工智能概念相去甚远,但第二种方法在某种程度上是软件通过研究专家设计的镜头来制定规则,从而“学习”光学的一种手段。他认识到人工智能是所谓的“处女地”,因为没有人研究过人工智能在镜头设计中的潜力。90 年代,镜头设计的趋势是全局优化和遗传算法 [2,3,4]。Dilworth 改进了他的“专家系统”,今天我们可以将其看作是一种不同的人工智能应用 [5]。人工智能在镜头设计中的想法不再受到关注。在 2002 年的 IODC 会议上,香农做了一个关于“镜头设计五十年”的演讲;我们现在知道了什么是当时不知道的?’[6]。我从手稿中摘录了以下句子:“未来的进步可能需要在设计程序中构建更多基础知识。未来的镜头设计程序需要纳入学习和教学功能。设计程序应该成为知识的宝库,以及一套工具。”香农看到设计程序可以做更多的事情,这也许就是未来。因此在接下来的十年里,该领域出现了新的应用,第一个是计算成像 [7] ,其次是新型表面,包括泽尔尼克和自由曲面等等。这些新的镜头设计趋势需要镜头设计师尚未完全掌握的额外技能。因此,为了有效地使用它,镜头设计师需要一些帮助。这就是为什么 (也许) 最早的 AI 应用之一是关于自由曲面的 [8] 。这么多年来,我们可以肯定,从镜头设计的角度来看,如果 AI 能够做到以下几点,它就会很有用: