在美国,在2011年至2014年间,儿童和青少年肥胖症的患病率为17%,其中5.8%的肥胖症极端肥胖(体重指数(BMI)≥年龄和性别的第95%英里的120%至120%,或≥35kg/m 2)(1)(1)。小儿患者的肥胖症与血管和代谢风险增加有关(高血压,冠状动脉疾病,2型糖尿病(T2D)(T2D),血脂异常和肝脂肪变性)(2)。前糖尿病被定义为空腹葡萄糖受损,葡萄糖耐受性受损或在5.7%至6.4%之间升高的糖化血红蛋白(HBA1C),并且最多可在5名青少年中的1名,年龄为12-18岁的青少年(3)中。T2D是由β细胞功能障碍以及外周和肝胰岛素敏感性下降引起的,并且与长期的微血管和大血管并发症有关(4)。在青少年和青少年(今日)研究中的T2D治疗方案中,发现具有T2D的青少年在诊断后不久患有心脏代谢合并症(5)。此外,在诊断为T2D时,β细胞功能和胰岛素分泌显着受损,残留的β细胞功能是最近诊断为T2d的儿科患者中血糖控制的主要预测指标(6,7)。美国儿科患者中T2D的患病率随种族和种族而变化,尽管在美洲原住民中最高(8)。具有糖尿病前期的青少年可能会在重复测试时恢复为正常血糖,这被认为与青春期后胰岛素抵抗的改善有关(9)。在青少年中,糖尿病前期对T2D的进展未得到充分的特征,在公开的研究中报告了广泛的研究:2-24%(10-12)。因此,我们旨在评估糖尿病前期对T2D的现实进展,其中大量具有降级商业索赔数据的青少年。
妊娠期糖尿病 (GDM) 是指妊娠期间新发或首次确诊的糖耐量异常。据报道,全球 12.8% 的孕妇患有 GDM,在中国 GDM 的发病率已达 14.8%,且呈上升趋势 (1)。妊娠期高血压疾病 (HDP) 是一组以妊娠期间血压升高为特征的母体疾病,包括妊娠期高血压、子痫前期和子痫。据报道,全球 HDP 的患病率为 4.6% 至 13.1% (2),在中国孕妇中约为 5% 至 10% (3)。GDM 和 HDP 均与不良出生结局的风险相关,包括新生儿出生体重、早产 (PTB)、前置胎盘、胎膜早破和胎盘早剥。 GDM 的长期并发症包括母亲和后代的肥胖、糖尿病和心血管疾病。HDP 会增加未来冠状动脉疾病和慢性肾脏疾病的风险。GDM 和 HDP 都是妊娠期最常见的并发症。近年来,GDM 和 HDP 的患病率迅速上升。同时患有这两种疾病的孕妇对临床管理提出了巨大的挑战。先前的研究表明 GDM 和 HDP 密切相关,患有 GDM 的女性患高血压和先兆子痫的风险显著增加(4)。GDM 和 HDP 共病可能会进一步增加不良出生结局的风险。然而,先前的研究大多调查了只有其中一种疾病对不良结局的影响。关于 GDM 和 HDP 共病的研究很少,它们之间的相互作用尚不清楚。单一疾病的 GDM 或 HDP 与不良结局之间的关系已经得到充分证实。 GDM 与巨大儿、先兆子痫、低体重出生儿、产伤(肩难产)、呼吸窘迫、剖宫产、新生儿重症监护病房(NICU)和胎儿死亡等不良结局相关(5,6)。HDP 增加早产、死产、小于胎龄儿(SGA)和低体重出生儿的风险(3,7)。PE 显著增加胎盘早剥的风险(8)。研究表明,对于 GDM 合并 PE 的孕妇,妊娠期体重增加过多(GWG)会更明显地增加早产和大于胎龄儿(LGA)的风险(9),并且其 PE 严重程度与 SGA 呈正相关(10),这表明 GDM HDP 的共病可能会对不良出生结局产生显著影响。另一项研究表明糖尿病合并高血压显著增加早产发生率,但该研究中的是慢性糖尿病而非妊娠期糖尿病(11)。英国的一项研究表明妊娠期糖尿病合并妊娠期高血压显著增加LGA和剖宫产的发生率
糖尿病足溃疡(DFUS)是糖尿病最常见且高度残疾的并发症之一,其特征是持续的脚步溃疡具有高感染率和截肢的风险,对患者生活质量和公共卫生系统构成了重大挑战(1)。根据数据预测,到2030年,全球糖尿病人口估计约为4.39亿(2)。在糖尿病患者中,大约30%的人会在其一生中出现足球溃疡(3),其中一部分患者因溃疡恶化而受到截肢的风险。研究表明,到2050年,三分之一的美国人将患有糖尿病,多达34%的糖尿病患者将在其一生中发展糖尿病足溃疡(DFU)(4)。DFU是成年糖尿病患者的严重并发症(5),一生中约有19%-34%的人足性溃疡,随着患者的年龄和医疗保健的复杂性,这种风险会增加(6)。DFU可以导致严重的结果,例如感染,截肢和死亡,在3 - 5年内复发率为65%(7),截肢率为20%,5年死亡率高达50%-70%(8)。尽管在多学科预防和早期筛查方面取得了进步,但在某些地区,截肢率却有所提高,尤其是影响年轻个人和少数群体,突出了DFU管理中的差异和不平等现象(9)。此外,糖尿病患者的免疫功能降低并降低了感染性(10),进一步增加了与DFU相关感染的风险(11)。在这些机制中,持续的炎症反应和组织受损(12)被认为是DFU的进展中的关键驱动因素。最近的研究表明,CXCR4基因在诸如细胞迁移,炎症调节和组织修复等过程中起重要作用(13),并且CXCR4的异常表达被认为是多种慢性条件下疾病进展的驱动力(14,15)。cxcr4在各种细胞类型(16)中表达,并通过其配体CXCL12调节细胞迁移,增殖和炎症反应(17)。研究表明,CXCR4在诸如DFU之类的慢性伤口中异常表达,可能导致
妊娠期缺铁对孕产妇和胎儿的不良影响仍然是一个全球性的健康问题,影响着 10 - 90% 的孕妇 ( 1 ),因为铁是一种有害的补充剂。根据世界卫生组织的建议,每日口服补铁(每日摄入 30-60 毫克元素铁)应成为常规产前护理的一部分,以避免不良的孕产妇和胎儿结局,包括宫内生长受限、早产以及新生儿和围产期死亡 ( 1 ) ( 2 )。然而,当孕妇摄入过量的铁时,很容易对新生儿和母亲造成潜在的伤害,因为新兴研究表明,生命早期造血期间接触高铁可能会诱发贫血,对发育产生重大影响,并可能降低促红细胞生成素敏感性,从而限制红细胞生成 ( 3 ) ( 4 ) ( 5 )。血清铁蛋白是一种主要的铁储存蛋白,是广泛使用的全身铁储存标记物,具有纳米大小的水合氧化铁核心和笼状蛋白质外壳,含有 20% 的铁。最近越来越多的研究发现,血清铁蛋白浓度较高也与妊娠期代谢紊乱有关,如妊娠期糖尿病 (GDM)、血清脂类异常、胰岛素抵抗 (IR),胰岛素抵抗通过稳态模型评估-胰岛素抵抗 (HOMA-IR)、稳态模型评估-胰岛素分泌 (HOMA-IS) 和稳态模型评估-b 细胞功能 (HOMA-b) 等指标计算 (6)(7)(8)(9)。相反,还有其他相互矛盾的研究表明,补铁不会增加 GDM 的风险,但就妊娠结局而言对母亲和胎儿大有裨益 (10)(11)。考虑到研究的缺乏且结果相互矛盾,为了评估中国妊娠人群血清铁蛋白与代谢紊乱之间的关系,我们利用上海市第一人民医院孕妇的流行病学数据,探讨血清铁蛋白水平与妊娠期糖尿病、血脂异常、胰岛素抵抗等代谢紊乱患病率之间的关联。
2型糖尿病(T2DM)在21世纪(国际糖尿病联合会(IDF),2022年)以惊人的速度增长。T2DM及其并发症在所有地区都带来了沉重的疾病负担(Ali等,2022)。确定与T2DM发展有因果关系的因素可以为预防疾病提供重要的证据基础,并促进新治疗策略的发展。肠道菌群(GM)是一个复杂的生态系统,由大约4×10 13种共生细菌,原生动物,真菌,古细菌和病毒组成(Chen等,2021; Martino等,2022)。gm参与了人体的各种生理活性,例如代谢,炎症过程和免疫反应(Fan and Pedersen,2021; Gill等,2022)。越来越多的证据表明,转基因在T2DM等代谢疾病中起重要作用(Gurung等,2020)。T2DM患者患有代谢疾病和慢性炎症状态,并伴有GM障碍(Yang等,2021)。还发现了GM组成的变化与T2DM的发展以及相关并发症的显着关联(Iatcu等,2021),例如,门类细菌群/企业的不平衡与近距离渗透性相关联,与近距离渗透性相关联,并渗透性渗透性,伴有细胞质,伴有细胞质,并渗透性,并伴有细胞处理效果。随后的DM的炎症反应特征(Iatcu等,2021)。也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。 尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。 孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。 由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险也已经报道了几种细菌,例如发酵乳杆菌,足底和酪蛋白,罗斯伯里亚肠道,akkermansia muciniphila和fragilis菌丝,通过降低流量疗法和维持肠道的速度(IIAT)(降低dm)的风险,通过降低DM发育的风险来发挥保护作用(20)。尽管如此,有必要区分引起疾病的GM的特征以及疾病或其治疗引起的疾病的特征。孟德尔随机化(MR)是评估可观察到的可修改暴露或危险因素与临床相关结果之间观察到的关系的因果关系的宝贵工具(Sekula等,2016)。由于孟德尔的种族隔离和独立的分类法,它可以消除与传统观察性流行病学研究相比,可以消除混杂的偏见,并促进了出现的因果途径的分离表型分组风险
头颈癌是全球第六个最常见的癌症(Warnakulasuriya,2009年),口服和口咽癌是最常见的亚型。烟草和酒精消耗(Hashibe等,2009),人乳头瘤病毒(HPV)感染(Ang等,2010)和特定的性行为(Heck等,2010)已被认为是口腔和口腔和口腔咽部癌症癌症危险因素。最近,人们对癌症与微生物组之间的联系越来越多。特别是,在肠道微生物组中已经观察到癌症相关的生物标志物(Cullin等,2021)。肠道菌群是肠道中存在的细菌种类的集合。肠道微生物在肿瘤中的作用可以分为局部和远端角色(Matson等,2021)。除了特异性肠道微生物在局部致癌作用中具有的重要作用外,肠道微生物还可以改变宿主的整体免疫系统,从而导致癌症(Castellarin等,2012; Amieva and Peek,2016)。肠道微生物与肠上皮之间存在天然的解剖屏障,主要由分泌肠道粘液的杯状细胞组成(Kim和Ho,2010)和产生抗菌肽的细胞(Salzman等人(Salzman et al。,2007))。因此,肠道微生物与免疫系统之间的接触受到限制。但是,特定的微生物会影响肠道屏障的完整性。益生菌调节免疫系统是一种潜在的抗肿瘤策略(Vétizou等,2015)。当这种完整性被破坏时,癌的数量越来越多,通过受损的肠道障碍循环(Rajagopala等,2017);此外,诱导了炎症或免疫抑制,在促进癌症中起间接作用(Yu and Schwabe,2017)。An example illustrating this distal role is that the gut microbiota can promote hepatocellular carcinoma and pancreatic cancer growth/progression/invasion and metastasis, which contain no known microbiome, by elevating cancer- promoting in fl ammatory microbial-associated molecular patterns such as lipopolysaccharides ( Dapito et al., 2012 ; Ochi et al., 2012 ).肠道微生物可以通过调节肠上皮屏障的原发性和继发性淋巴机构来调节免疫力,从而影响肿瘤微环境(Gopalakrishnan等,2018)。先前已经报道了肠道微生物与肠肿瘤敏感性之间的关联(Yachida等,2019)。肠道微生物群已被证明通过调节免疫细胞功能,影响炎症反应,调节免疫耐受性(Zhou等,2021)和产生代谢物(Zhang等,2019)。然而,肠道菌群与肠胃外肿瘤(尤其是口咽和口服癌症)之间的因果关系尚不清楚。Mendelian随机化(MR)是一种统计方法,用于根据工具变量(遗传变异)评估暴露与结果之间的因果关系,可以看作是随机对照试验(RCT)的自然类似物。因此,我们旨在研究肠道菌群是否与口服和与传统的黄金标准RCT相反,参与者根据其基因型分配,从而减少了反向因果关系和混杂因素(例如道德和社会经济因素)的影响。
● Predicting Consultation Success in Online Health Platforms Using Dynamic Knowledge Networks and Multimodal Data Fusion, University of Arizona, 2024 ● Predicting Consultation Success in Online Health Platforms Using Dynamic Knowledge Graphs and Multimodal Data Fusion, Summer Workshop on AI for Business (SWAIB), Shanghai, China, 2024 ● Achieving Equitable Access to Medical Laboratory Tests through Optimal Sparse Decision Tree, IISE Annual Conference & EXPO,加拿大蒙特利尔,2024●使用多模式和多通道多通道的多渠道综合语音术数据,IISE年度会议和博览会,加拿大蒙特利尔,2024年,患者辍学的预测:一种多模式的动态知识和文本矿业,IC Science,IC Scorial,IC Scorial,IC Science,IC Science,IC Scorial,IC Scorial,IC Sciencal,Arona social IC, Real-Time Signals with Wavelet-Transform-based Convolutional Neural Network, in: Proceedings of the 54 th Hawaii International Conference on System Sciences (HICSS), Hawaii, USA, 2023 ● Depression Detection in Social Media Using Time-and-knowledge-aware LSTM and Depression Diagnosis-related Entity Extraction, FoRMLA - Front Range of Machine Learning Alliance Seminar Series, University of Colorado, 2022 ● ICU Mortality预测:我们可以做得更好吗?一个基于机器学习和随机信号分析技术的新模型,爱荷华州立大学,2021●域●领域适应从大型社交媒体数据集中提取信号的域名,爱荷华州立大学,2018年,对哮喘的风险因素的全面分析:基于机器学习和机器学习和大型异构数据源的疾病,及其在jossection和sysport of Systems of Systems的疾病和分析的信息, Management, UT Dallas, 2018 ● A Machine Learning Approach for Understanding Population-Level Health Effects of E-Cigarettes, Conference on Health IT and Analytics (CHITA), 2017 ● Are Electronic Nicotine Delivery Systems (ENDS) a Safe Substitute for Cigarettes Among Asthma Patients: A Social Media Based Analysis, INFORMS Annual Meeting, Houston, Texas, USA, 2017 ● Domain Adaptation for Signal Extraction from Large Social Media Datasets, the INFORMS Conference on Information Systems and Technology (CIST), Houston, Texas, USA, 2017 ● Are Electronic Cigarettes a Safer Substitute for Cigarettes for Asthma Patients, Workshop on Information Technologies and Systems (WITS), Seoul, South Korea, 2017 ● A Comprehensive Analysis of Risk Factors for Asthma: Based on Machine Learning and Large Heterogeneous Data Sources, Iowa State University, 2017 ● Extracting Signals from Social Media for Chronic Disease监视,国际数字健康会议(DigitalHealth'16),蒙特利尔,加拿大魁北克,2016年●社交媒体上有关电子烟的关键对话趋势和模式,信息会议,田纳西州纳什维尔,田纳西州,2016年,2016年
众所周知,2型糖尿病是一种因胰岛素相对或绝对缺乏而导致血糖升高的严重慢性疾病,被认为是内分泌代谢紊乱的重要组成部分(1,2)。国际糖尿病联盟(IDF)发布的《2021年糖尿病图谱》显示,到2030年糖尿病患者数量将达到6.43亿,预计到2045年将上升到惊人的7.83亿,全球与糖尿病相关的医疗保健支出可能超过1.05万亿美元(3,4)。2021年全球疾病负担研究表明,截至2021年,糖尿病已成为个人死亡和残疾的第八大风险因素(5)。事实上,大量研究糖尿病相关死亡原因的研究表明,大多数 2 型糖尿病患者至少患有一种合并症全身并发症,包括神经病变、肾病、视网膜病变,尤其是心血管损害,这是糖尿病患者死亡的主要原因(6、7)。研究表明,越来越多的 2 型糖尿病患者在年轻时(40 岁以下)被诊断出来,导致预期寿命缩短和寿命损失年数增加(8)。因此,美国糖尿病协会在其糖尿病护理标准中一直强调实施适当策略对预防和延缓糖尿病相关多系统并发症的重要性(9)。虽然葡萄糖代谢和脂质代谢是相对独立的代谢途径,但它们通过肾素-血管紧张素-醛固酮系统、线粒体功能、氧化应激和炎症反应错综复杂地相互联系。这些被破坏的分子和细胞机制共同导致了糖尿病和动脉粥样硬化的发展(10)。随着全球代谢性心血管疾病负担的不断加重,越来越多的研究强调,需要采取关键的预防和治疗干预措施,以减轻代谢因素对心血管健康的影响(11)。周围神经病变是糖尿病患者中最常见、最复杂、最严重的并发症之一,显著增加了溃疡、非创伤性截肢和足部感染的风险,可能导致长期残疾,并给 2 型糖尿病患者带来巨大的经济和心理负担(12)。此外,一项在亚洲人群中进行的观察性研究显示,2 型糖尿病患者中 2 型糖尿病肾病(DKD)的患病率高达
先天免疫是宿主对病原体入侵的第一条防御线。病毒感染后,宿主细胞识别与结构一致的病原体相关的分子模式,这促使他们迅速启动一系列信号传导过程,从而导致I型Interferon(IFN)(IFN)和其他抗病毒物质产生(1)。在细胞质中传感病毒DNA后,CGA催化了ATP和GTP的环状GMP-AMP(CGAMP)的形成(2)。cgamp进一步激活刺痛,这是内质网上关键的淋巴结蛋白(3)。在微粒体中,激活的刺激性易位从内质网易位,募集伴侣分子TBK1,磷酸化的TBK1招募IRF3(4)。激活的IRF3从细胞质转移到细胞核,以启动I型IFN的产生并诱导抗病毒免疫反应(5,6)。伪造病毒(PRV)引起的人畜共患病伪造是危害猪养殖进一步生长的最危险的爆发之一(7)。伪标记病毒也被称为猪疱疹病毒,猪是PRV的天然容器(8)。PRV可以感染不同年龄的猪群,导致生殖疾病,流产,母猪的堕胎,猪的神经系统疾病和死亡,繁殖公猪的无菌性以及免疫促进性和免疫症状和生长迟缓(9)。PRV会感染许多哺乳动物,从而导致人类,家畜,狗和小鼠的发病率或急性死亡(10-12)。PRV是A HERPESVIRUS家族的成员,已经发展了与宿主免疫反应对抗的策略(15)。对PRV致病机制的研究对于预防和管理动物疾病以及由于PRV可能感染及其高致病性而导致的人的健康和安全至关重要。疱疹病毒是编码病毒蛋白的一类免疫抑制病毒,可以通过不同的方式调节免疫反应并促进病毒免疫逃逸(13、14)。据报道,由PRV编码的各种Tegument蛋白可能调节由CGAS丁字裤信号通路介导的抗病毒先天免疫,从而促进病毒复制和潜在感染(16)。PRV Tegument蛋白UL21通过选择自噬途径结合CGA并诱导CGAS降解(17)。prv ul13靶向刺激和IRF3,并抑制DNA信号通路的激活(18,19)。蛋白酶体路线由于PRV US3而降低了BCLAF1,并且还可以防止ISGF3与ISRE结合的能力(20)。PRV UL42竞争性地将ISRE与ISGF3结合,并减少ISG的产生(21)。这些报告表明,PRV Tegument蛋白可以通过多种方式抑制宿主免疫反应。但是,PRV逃脱宿主先天免疫并调节I型IFN响应的更多机制尚不清楚。我们的研究表明,PRV Tegument蛋白US2是CGAS丁字途径的新调节剂,可防止IFN产生和抗病毒免疫,以响应PRV感染。虽然US2与STING相互作用并降低其稳定性,但US2缺乏率降低了由于PRV而降解的STING蛋白量。尤其是US2与E3泛素一起
类风湿关节炎 (RA) 是一种常见的炎症性疾病,主要影响关节。作为一种自身免疫性疾病,它还会导致关节外多个器官系统的损害,包括心血管系统、肝脏、肾脏等 ( 1 , 2 )。目前,全球每 200 个成年人中约有 1 人患有 RA,女性发病率更高。然而,RA 的确切病因仍不明确;遗传和环境因素都可能在该疾病的发展中发挥作用 ( 3 )。先前的一项研究表明,活性氧 (ROS) 水平升高与 RA 密切相关。人体内多种氧化剂和抗氧化剂必然会在 RA 中发挥作用,这为人们预防 RA 以及衡量或改善 RA 患者的生活质量提供了一些思路 ( 4 )。许多研究已经探讨了如何通过养成健康的饮食习惯来有效降低 RA 的可能性。研究结果表明,补充抗氧化剂可能是一种有益的补充方法,可减少类风湿性关节炎患者的氧化应激,而补充锌和硒多年来一直被用于预防类风湿性关节炎缓解 ( 5 )。然而,一些研究表明,摄入某些抗氧化剂似乎并不能改善类风湿性关节炎 ( 6 )。不同的科学家对酒精对类风湿性关节炎的影响有不同的看法 ( 7 , 8 ),但根据现有研究,吸烟、超重和不健康的生活方式对类风湿性关节炎的影响似乎是肯定的 ( 9 )。氧化平衡评分 (OBS) 是为了全面评估人体内氧化和抗氧化状况而开发的。它整合了多种营养饮食和各种生活方式,一般来说,OBS 升高表示促氧化负担降低 ( 10 )。目前,越来越多的流行病学研究正试图发现 OBS 与某些流行疾病之间的相关性。一些研究发现,较高的OBS评分与癌症患病率降低相关(11)。OBS与糖尿病(12)和抑郁症(13)之间也存在类似的负相关关系,并且在女性中这种关系似乎更为明显。根据Wang等人的研究,OBS还可用于测量全因死亡率和心血管疾病死亡率(14)。每个人都有自己的饮食习惯和生活方式,这些因素对RA可能是有益的,也可能是有害的。通过选择来自国家健康和营养检查调查(NHANES)的数据,我们利用OBS评分系统对这些因素进行了综合评估。我们旨在首次系统地评估它们对RA的影响及其潜在影响。我们希望这能为未来预防、诊断和治疗RA提供参考。
