在2019年12月,在湖北省武汉市发现了许多病毒性肺炎病例。到2020年2月,全国范围内有20,000多例2019年冠状病毒疾病(Covid-19),有425例患者死亡。在这次暴发中,西方医学在不识别病原体的情况下进行有针对性的治疗很难,但是传统中药(TCM)可以通过综合征分化和治疗迅速确定原因(Zeng等,2020)。covid-19属于TCM中“流行病”类别,其病理变化首先出现在间质肺中(Yang and Fan,2021)。主要症状是发烧,干性咳嗽和疲劳。在严重的情况下,可能会发生肺合并(Miao等,2020; Xiong,2020; Zhan等,2020)。鉴于这些症状,应用了许多处方,例如金胡乌拉甘格颗粒,Shufeng Jiedu胶囊,Jingfang颗粒和Jinbei口服液体(JB。l),并在诊所显示出明显的治愈作用。在其中,JB。L在2020年2月在山东省(第二版)的新型冠状病毒肺炎的中药诊断和治疗计划中列出,我们随后的临床数据分析表明,JB的效果。L优于单一化学疗法组(Li等,2021)。JB。它具有补充气和滋养阴,驱除血液停滞和去除痰液的作用。因此,在本实验中,JB的化学组成。L is composed of Astragali radix , Codonopsis radix , Angelica sinensis , Glehniae radix , Scutellariae radix , Fritillariae cirrhosae bulbus , Chuanxiong rhizoma , Salvia miltiorrhiza radix , Pinelliae rhizoma praeparatum cumalumine , Lonicerae japonicae fl os , Forsythiae Fructus和Glycyrrhizae radix。尽管TCM处方具有一定的理论和临床应用基础,但复合TCM处方的材料基础很复杂,而动作机制是多种多样的,这给TCM的有效性带来了基本材料研究。近年来,连字符技术是对复杂矩阵中未知化合物的快速定性分析的强大工具,尤其是超出性液态色谱,以及四极杆的时间串联串联质量光谱法(UPLC-Q-Q-TOF-MS),这是有益于其高分辨率和敏感性的。这些方法已被证明是对TCM制剂快速分析的有效和高度敏感的工具(Gao等,2014; Zhang等,2017a; li等,2018; Wang等,2018; Sun等,2021)。此外,UPLC与三极四极质量光谱法(UPLC-QQQ-MS/MS)可以很好地应用于通过多个反应监测(MRM)模式对TCM多个化学成分的定量分析,这在TCM的现代化中具有很大的意义(Wu et and an e et al。 )。研究TCM效率的材料基础是解决TCM有效作用原理的先决条件,而确定TCM的有效组成部分是主要任务。l通过UPLC-Q-TOF-MS/MS定性确定,并且主要功能组件通过UPLC-MS/MS定量分析。这是关于JB化学成分的系统分析的第一个报告。l,为质量控制和对其药效学的深入研究提供了基础。
1。伯特利·塔雷基(Bethel Tarekegne),丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell。“存储作为股票资产。”当前的可持续/可再生能源报告8,149-155(2021年9月)。2。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。 “审查储能系统的代码和标准”。 当前的可持续/可再生能源8,138-148(2021年9月)。 3。 Patrick Balducci,Kendall Mongird,Mark Weimar。 “了解储能对电源系统的可靠性和弹性应用的价值。” 当前的可持续/可再生能源报告8,131-137(2021年9月)。 4。 Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。 “有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。” 自然能源6,873-881(2021年9月)。 5。 Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Charlie Vartanian,Matt Paiss,Vilayanur Viswanathan,Jaime Kolln,David Reed。“审查储能系统的代码和标准”。当前的可持续/可再生能源8,138-148(2021年9月)。3。Patrick Balducci,Kendall Mongird,Mark Weimar。“了解储能对电源系统的可靠性和弹性应用的价值。”当前的可持续/可再生能源报告8,131-137(2021年9月)。4。Xiang Li,Peiyuan Gao,Yun-Yu Lai,J。DavidBazak,Aaron Hollas,Heng-Yi Lin,Vijayakumar Murugesan,Shuyuan Zhang,Chung-Fu Cheng,Wei-Yao Tung,Yuehting Lai,Yuehting Lai,Yueh-ting Lai,Ruozhu Feng,Yien Yien wang,Wei-wang,Weunwang,wang,W。“有机铁复合体的对称性设计,用于长循环性有机氧化还原流动电池。”自然能源6,873-881(2021年9月)。5。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。 “对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。” 材料化学杂志A 9(36),20766-20775(2021年8月)。 6。 Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。 “锂离子电池物理学和基于统计的健康模型。” 7。 8。 9。Ismael A. Rodriguez-Perez,Hee-Jung Chang,Matthew Fayette,Bhuvaneswari M. Sivakumar,Daiwon Choi,Xiaolin Li,David Reed。“对轻度水解物中Zn – Mno 2电池中氧化还原过程的机理研究。”材料化学杂志A 9(36),20766-20775(2021年8月)。6。Alasdair J. Crawford,Daiwon Choi,Patrick J. Balducci,Venkat R. Subramanian,Vilayanur V. Viswanathan。“锂离子电池物理学和基于统计的健康模型。”7。8。9。权力来源杂志501,230032(2021年7月)。Hee-Jung Chang,Ismael A. Rodriguez-Perez,Matthew Fayette,Nathan L. Canfield,Huilin Pan,Daiwon Choi,Xiaolin Li,David Reed。“水基粘合剂对轻度水性锌电池中锰二氧化碳阴极的电化学性能的影响。”碳能3:(3),473-481(2021年7月)。Bhuvaneswari M. Sivakumar,Venkateshkumar Prabhakaran,Kaining Duanum,Edwin Thomsen,Brian Berland,Nicholas Gomez,David Reed,Vijayakumar Murugesan。“钒氧化还原流量电池中碳电极的长期结构和化学稳定性。”ACS应用能源材料4:(6),6074-6081(2021年6月)。Xiaowen Zhan,Minyuan M. Li,J. Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Xiaowen Zhan,Minyuan M. Li,J.Mark Weller,Vincent L. Sprenkle,Guosheng Li。 “最近用于卤化钠卤化物电池的阴极材料的进度。” 材料14:(12),3260(2021年6月)。 10。 Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。 “可逆的酮氢化和脱氢有机氧化还原流量电池。” 科学372:(6544),836-840(2021年5月)。 11。 J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。Mark Weller,Vincent L. Sprenkle,Guosheng Li。“最近用于卤化钠卤化物电池的阴极材料的进度。”材料14:(12),3260(2021年6月)。10。Ruozhu Feng,Xin Zhang,Vijayakumar Murugesan,Aaron Hollas,Ying Chen,Yuyan Shao,Eric Walter,Nadeesha P. N. Wellala,Litao Yan,Kevin M. Rosso,Kevin M. Rosso,Wei Wang。“可逆的酮氢化和脱氢有机氧化还原流量电池。”科学372:(6544),836-840(2021年5月)。11。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。 “使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。 物理化学杂志B 125(19),5089-5099(2021年5月)。 12。 junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。 13。 14。J. David Bazak,Allison R. Wong,Kaining Duanmu,Kee Sung Han,David Reed,Vijayakumar Murugesan。“使用多核NMR和DFT使用水性硫酸的浓度依赖性溶剂化结构和动力学”。物理化学杂志B 125(19),5089-5099(2021年5月)。12。junhua Song,Kang Xu,Nian Liu,David Reed,小姐Li。13。14。“在可充电锌电池复兴中的十字路口。”今天的材料45:191-212(2021年5月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。 “在剃须占空比下评估斑马电池模块。” 材料14:(9),2280(2021年4月)。 Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。 “富含锰的层状钠阴极的空缺 - 实现了O3相稳定。” Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。 15。 di Wu,Xu MA。 “用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。” 当前的可持续/可再生能源报告(2021年3月)。 16。 di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。 “对幕后光伏的经济评估,并在夏威夷群岛上配对电池。” 应用能源286(2021年3月)。 17。 Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。 “通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。” 细胞报告物理科学2(2),100323(2021年2月)。 18。 “应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。” ACS Energy Letters 6,547-556(2021年2月)。Nimat Shamim,Edwin C. Thomsen,Vilayanur V. Viswanathan,David Reed,Vincent Sprenkle,Guosheng Li。“在剃须占空比下评估斑马电池模块。”材料14:(9),2280(2021年4月)。Biwei Xiao,Yichao Wang,Sha Tan,Miao Song,Xiang Li,Yuxin Zhang,Feng Lin,Kee Sung Han,Fredrick Omenya,Khalil Amine,Xiao-Qiao-Qinging Yang,Yang,David Reed,David Hu,Yanyan Hu,Gui-liang Xu,Enyyuan liia liia li,XIA,XIA,XIA,XIA,XINIA,XINIA,XINININ kininnin。“富含锰的层状钠阴极的空缺 - 实现了O3相稳定。”Angewandte Chemie International Edition 60(15),8258-8267(2021年4月)。15。di Wu,Xu MA。“用于控制和尺寸连接网格的能量存储的建模和优化方法:审查。”当前的可持续/可再生能源报告(2021年3月)。16。di Wu,Xu MA,Patrick Balducci,Dhruv Bhatnagar。“对幕后光伏的经济评估,并在夏威夷群岛上配对电池。”应用能源286(2021年3月)。17。Vijayakumar Murugesan,Zimin Nie,Xin Zhang,Peiyuan Gao,Zihua Zhu,Qian Huang,Litao Yan,David Reed,Wei Wang。“通过可调溶剂化学的化学反应加速了钒氧化还原流量电池的设计。”细胞报告物理科学2(2),100323(2021年2月)。18。“应力和与界面兼容的红磷阳极,用于高能和耐用的钠离子电池。”ACS Energy Letters 6,547-556(2021年2月)。Xiang Liu, Biwei Xiao, Amine Daali, Xinwei Zhou, Zhou Yu, Xiang Li, Yuzi Liu, Liang Yin, Zhenzhen Yang, Chen Zhao, Likun Zhu, Yang Ren, Lei Cheng, Shabbir Ahmed, Zonghai Chen, Xiaolin Li, Gui-Liang Xu, Khalil胺。19。Minyuan M. Li,Xiaochuan Lu,Xiaowen Zhan,Mark H. Engelhard,Jeffrey F. Bonnett,Evgueni Polikarpov,Keeyoung Jung,David M. Reed,Vincent Sprenkle,Vincent Sprenkle,Guosheng Li。“高温硫磺电池在低温下通过优质的熔融性可润湿性。”化学通信57(1)45-48(2021年1月)。20。Maitri Uppaluri,Akshay Subramaniam,Lubhani Mishra,Vilayanur Viswanathan,Venkat R. Subramanian。“传输模型可以预测锂金属电池中的逆特征而不修饰动力学吗?”电化学学会杂志167,第16号,文章编号160547(2020年12月)。21。Qian Huang,Bin Li,Chaojie Song,Zhengming Jiang,Alison Platt,Khalid Fatih,Christina Bock,Darren Jang,David Reed。“通过稳定的参考电极对全瓦数氧化还原流量电池进行原位可靠性研究。”电化学学会杂志165,第16号,第160541条(2020年12月)。22。Jeremy Twitchell,Jeffrey Taft,Rebecca O'Neil,Angela Becker-Dippmann。2021,PNNL-30172,西北国家实验室,华盛顿州Richland。 嵌入式网格储能的调节含义23。 丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。 2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30172,西北国家实验室,华盛顿州Richland。嵌入式网格储能的调节含义23。丽贝卡·奥尼尔(Rebecca O'Neil),杰里米(Jeremy)Twitchell,Danielle Preziuso。2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。 能源公平与环境正义研讨会报告2021,PNNL-30949,西北部国家实验室,华盛顿州里奇兰。能源公平与环境正义研讨会报告
Build-A-Genome 课程的作者:Breeana G. Anderson、Abena Apaw、Pavlo Bohutskyi、Erin Buchanan、Daniel Chang、Melinda Chen、Eric Cooper、Amanda Deliere、Kallie Drakos、Justin Dubin、Christopher Fernandez、Zheyuan Guo、Thomas Harrelson、Dongwon Lee、Jessica McDade、Scott Melamed、Héloise Muller、Adithya Murali、José U. Niño Rivera、Mira Patel、Mary Rodley、Jenna Schwarz、Nirav Shelat、Josh S. Sims、Barrett Steinberg、James Steinhardt、Rishi K. Trivedi、Christopher Von Dollen、Tianyi Wang、Remus Wong、Yijie Xu、Noah Young、Karen Zeller 和 Allen Zhan。 1 纽约大学朗格尼健康学院系统遗传学研究所和生物化学与分子药理学系,纽约,纽约州 10016,美国 2 约翰霍普金斯大学彭博公共卫生学院环境健康与工程系,美国马里兰州巴尔的摩 21205,美国 3 欧洲分子生物学实验室 (EMBL),基因组生物学部,德国海德堡 69117 4 爱丁堡大学生物科学学院,英国爱丁堡 EH9 3BF 5 爱丁堡大学信息学院,英国爱丁堡 EH8 9AB 6 约翰霍普金斯大学惠廷工程学院生物医学工程系,美国马里兰州巴尔的摩 21218,美国 7 约翰霍普金斯大学克里格艺术与科学学院生物学系,美国马里兰州巴尔的摩 21218,美国 8 化学与生物分子工程系,约翰霍普金斯大学怀廷工程学院,美国马里兰州巴尔的摩 21218 9 洛克菲勒大学细胞与结构生物学实验室,美国纽约州纽约 10065 10 格罗宁根大学医学中心欧洲老龄化生物学研究所,荷兰格罗宁根 11 哈佛医学院麻省总医院病理学系,美国马萨诸塞州波士顿 02114 12 约翰霍普金斯大学医学院医学系/传染病科,美国马里兰州巴尔的摩 21205 13 约翰霍普金斯大学医学院高通量生物学中心,美国马里兰州巴尔的摩 21205 14 斯坦福大学斯坦福基因组技术中心,美国加利福尼亚州帕洛阿尔托 94304 15 斯坦福大学医学院遗传学系,美国加利福尼亚州斯坦福 94305 16 纽约大学生物医学工程系Tandon 工程学院,纽约布鲁克林 11201,美国 17 现地址:欧莱雅研究与创新,新泽西州克拉克 07066,美国 18 现地址:Pondicherry Biotech Private Limited,Pondicherry 工程学院校区,East Coast Road,Pillaichavady,Puducherry 605014,印度 19 现地址:哈佛大学陈曾熙公共卫生学院生物统计学系,马萨诸塞州波士顿 02115,美国 20 现地址:Neochromosome,Inc.,纽约长岛市 11101,美国 21 现地址:科学与工业研究中心,基因组学与综合生物学研究所,Sukhdev Vihar,Mathura Road,新德里 110025,印度 22 这些作者贡献相同 23 主要联系人 * 通讯:weimin.zhang@nyulangone.org (WZ),jef.boeke@nyulangone.org (JDB), chandra@jhmi.edu (SC)
5。Yetisen,又名等,光子水凝胶传感器。生物技术进步,2016年。34(3):p。 250-271。6。Zhang,D。等人,从设计到刺激反应性水凝胶应变传感器的应用。材料杂志化学杂志b,2020。8(16):p。 3171-3191。7。ionov,L。,基于水凝胶的执行器:可能性和局限性。今天的材料,2014年。17(10):p。 494-503。8。Cheng,F.-M.,H.-X. Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Cheng,F.-M.,H.-X.Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Chen和H.-D.李,水凝胶执行器的最新进展。材料杂志化学杂志b,2021。9(7):p。 1762-1780。9。Hu,L。等人,利用刺激反应性聚合物的动力。高级功能材料,2020年。30(2):p。 1903471。10。li,J。和D.J.Mooney,设计用于控制药物输送的水凝胶。自然评论材料,2016年。1(12):p。 1-17。11。Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。Molecular Pharmaceutics,2019年。17(2):p。 373-391。12。SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。药物交付,2016年。23(3):p。 748-770。13。Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。材料科学与工程:R:报告,2015年。93:p。 1-49。14。刘,Z.,W。Toh和T.Y. 15。刘,Z.,W。Toh和T.Y.15。ng,软材料力学的进步:综述了水凝胶的大变形行为。国际应用机制杂志,2015年。7(05):p。 1530001。Huang,R。等人,智能材料组成型模型的最新进展 - 水凝胶和成形记忆聚合物。国际应用机制杂志,2020年。12(02):p。 2050014。16。Quesada-Pérez,M。等,凝胶肿胀理论:古典形式主义和最近的方法。软件,2011年。7(22):p。 10536-10547。17。Fennell,E。和J.M.Huyghe,化学响应式水凝胶变形力学:评论。分子,2019年。24(19):p。 3521。18。Ganji,F.,F.S。 vasheghani和F.E. vasheghani,水凝胶肿胀的理论描述:评论。 2010。 19。 Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。 Acta Mechanica Sinica,2021。 37:p。 367-386。 20。 Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。 材料科学与工程:C,2021。 127:p。 112208。 21。 Wu,S。等人,对水凝胶体积转变的建模研究。 大分子理论与模拟,2004年。 13(1):p。 13-29。 22。 Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。 传感器,2008。 8(1):p。 561-581。 23。 水,2020年。 24。Ganji,F.,F.S。vasheghani和F.E.vasheghani,水凝胶肿胀的理论描述:评论。2010。19。Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。Acta Mechanica Sinica,2021。37:p。 367-386。20。Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。材料科学与工程:C,2021。127:p。 112208。21。Wu,S。等人,对水凝胶体积转变的建模研究。大分子理论与模拟,2004年。13(1):p。 13-29。22。Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。传感器,2008。8(1):p。 561-581。23。水,2020年。24。Wang,J。等人,作为正向渗透过程中的抽吸溶液的最新发展和未来挑战。12(3):p。 692。Cai,S。和Z. Suo,理想弹性凝胶的状态方程。epl(Europhysics Letters),2012年。97(3):p。 34009。25。li,J。等人,理想弹性凝胶的状态方程的实验确定。软件,2012年。8(31):p。 8121-8128。26。subramani,R。等人,肿胀对聚丙烯酰胺水凝胶弹性特性的影响。材料中的边界,2020年。7:p。 212。27。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。 V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。 固体力学和物理学杂志,2022年。 168:p。 105017。 28。 Xu,S。等人,在脱水下同时加强和软化。 科学进步,2023年。 9(1):p。 EADE3240。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。固体力学和物理学杂志,2022年。168:p。 105017。28。Xu,S。等人,在脱水下同时加强和软化。科学进步,2023年。9(1):p。 EADE3240。
a.2会议会议记录[C1] Zelun Kong,Minkyung Park,Le Guan,Ning Zhang和Chung Hwan Kim,Tz- DataShield:通过基于Data-flow的嵌入式系统的自动数据保护,基于数据流界面,在32nd网络和分布式系统secu-rity semposium(nds sans sans sanss sansssemposium of 32nnd网络和分布式sans sans sans 2025)中。[C2] Ali Ahad,Gang Wang,Chung Hwan Kim,Suman Jana,Zhiqiang Lin和Yonghwi Kwon,Freepart:通过基于框架的分区和ISO的硬化数据处理软件,在第29届ACM国际ACM国际港口端口的ACP-SAN GRANAGE和SAN GONGRAMES MANERASS(SAN GONGIASS ACMAGES和SANG)会议上(作为SANGOMESS和SAN GRANEMASE CALGAIGS ACM ACM INGRAMES)(以及202) 2024)。[C3]小吴,戴夫(jing)tian和Chung Hwan Kim,在第14届ACM云composium cloud composium的会议记录中,使用CPU安全的飞地建造GPU TEES(SOCC 2023)(SOCC 2023)(SOCC 2023)(SACH CRUBE)(CA,CA,20233)。[C4] MD Shihabul Islam,Mahmoud Zamani,Chung Hwan Kim,Latifur Khan和Kevin Hamlen,在第13届ACM ACM ACM会议会议上,与ARM Trustzone的无信任边缘进行深入学习的机密执行有关数据,应用程序安全和隐私(Copaspy 20223),NC,NC,NC,NC,NC,NC,NC,nc,nc,nc,nc,nc,nc,nc ort trustzone(nc)。[c5] Seulbae Kim, Major Liu, Junghwan “John” Rhee, Yuseok Jeon, Yonghwi Kwon, and Chung Hwan Kim, DriveFuzz: Discovering Autonomous Driving Bugs through Driving Quality-Guided Fuzzing, in Proceedings of the 29th ACM Conference on Computer and Communications Security (CCS 2022) (Los Angeles, CA, 2022).[C11] Taegyu Kim,Chung Hwan Kim,Altay Ozen,Fan Fei,Zhan Tu,Xiangyu Zhang,Xinyan Deng,Dave(Jing)Tian和Dongyan Xu,从控制模型到程序:[C6] Kyeongseok Yang ∗,Sudharssan Mohan ∗,Yonghwi Kwon,Heejo Lee和Chung Hwan Kim,海报:在第29届ACM Commutity and Communications Secutlies Capecation和Communications Secutlies CACS 2022222222222222222222222222222222年,(ccc cc cc cc cc cc cc cc cc cc cc cc cc cc ccs 2022222222222222222222222222222222222222) 贡献。[c7] Taegyu Kim, Vireshwar Kumar, Junghwan “John” Rhee, Jizhou Chen, Kyungtae Kim, Chung Hwan Kim, Dongyan Xu, and Dave (Jing) Tian, PASAN: Detecting Peripheral Ac- cess Concurrency Bugs within Bare-metal Embedded Applications, in Proceedings of the 30th USENIX Security研讨会(USENIX Security 2021)(虚拟事件,2021)。[C8] Omid Setayeshfar,Junghwan“ John” Rhee,Chung Hwan Kim和Kyu Hyung Lee找到了我的懒惰:在第18届会议会议上,在第18届会议会议上,关于对侵犯和漏洞和恶意和恶意评估的第18届会议会议上,对真实企业计算机如何跟上软件更新比赛的自动比较分析(dirnerability cestions 2021)(dimva 2021)(dirneva)(dimva 202)。[c9] Kyungtae Kim, Chung Hwan Kim, Junghwan “John” Rhee, Xiao Yu, Haifeng Chen, Dave (Jing) Tian, and Byoungyoung Lee, Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors, in Proceedings of the 11th ACM Symposium on Cloud Computing (SOCC 2020) (Virtual Event, 2020).[c10] Yixin Sun, Kangkook Jee, Suphannee Sivakorn, Zhichun Li, Cristian Lumezanu, Lauri Korts-Pärn, Zhenyu Wu, Junghwan Rhee, Chung Hwan Kim, Mung Chiang, and Prateek Mittal, Detecting Malware Injection with Program-DNS Behavior, in Proceedings of the 5th IEEE European安全与隐私研讨会(Euros&P 2020)(虚拟事件,2020年)。
;路易吉·卡恰普蒂;塞尔吉奥·卡拉特罗尼;本杰明·卡努埃尔;基娅拉·卡普里尼;安娜·卡拉梅特;劳伦蒂乌卡拉梅特;马泰奥·卡莱索;约翰·卡尔顿;马特奥·卡萨列戈;瓦西利斯·查曼达里斯;陈玉傲;玛丽亚·路易莎·基奥法洛;阿莱西娅·辛布里;乔纳森·科尔曼;弗洛林·卢西安·康斯坦丁;卡洛·R·孔塔尔迪;崔亚欧;埃莉莎·达罗斯;加文·戴维斯;埃丝特·德尔·皮诺·罗森多;克里斯蒂安·德普纳;安德烈·德列维安科;克劳迪娅·德·拉姆;阿尔伯特·德罗克;丹尼尔·德尔;法比奥·迪·庞波;戈兰·S·乔尔杰维奇;巴贝特·多布里希;彼得·多莫科斯;彼得·多南;迈克尔·多瑟;扬尼斯·德鲁加基斯;雅各布·邓宁安;阿利舍尔·杜斯帕耶夫;萨扬·伊索;约书亚·伊比;马克西姆·埃夫雷莫夫;托德·埃克洛夫;格德米纳斯·埃勒塔斯;约翰·埃利斯;大卫·埃文斯;帕维尔·法捷耶夫;马蒂亚·法尼;法里达·法西;马可·法托里;皮埃尔·费耶;丹尼尔·费莱亚;冯杰;亚历山大·弗里德里希;埃琳娜·福克斯;纳瑟尔·加鲁尔;高东风;苏珊·加德纳;巴里·加勒威;亚历山大·高格特;桑德拉·格拉赫;马蒂亚斯·格瑟曼;瓦莱丽·吉布森;恩诺·吉斯;吉安·F·朱迪斯;埃里克·P·格拉斯布伦纳;穆斯塔法·京多安;马丁·哈内尔特;蒂莫·哈库利宁;克莱门斯·哈默勒; Ekim T. Hanımeli;蒂芙尼·哈特;莱昂妮·霍金斯;奥雷利恩·希斯;杰瑞特·海斯;维多利亚·A·亨德森;斯文·赫尔曼;托马斯·M·赫德;贾森·M·霍根;博迪尔·霍尔斯特;迈克尔·霍林斯基;卡姆兰·侯赛因;格雷戈尔·詹森;彼得·耶格利奇;费多·耶莱兹科;迈克尔·卡根;马蒂·卡利奥科斯基;马克·卡塞维奇;亚历克斯·凯哈吉亚斯;伊娃·基利安;苏门·科利;贝恩德·康拉德;约阿希姆·科普;格奥尔吉·科尔纳科夫;蒂姆·科瓦奇;马库斯·克鲁兹克;穆克什·库马尔;普拉迪普·库马尔;克劳斯·拉默扎尔;格雷格·兰茨伯格;迈赫迪·朗格卢瓦;布莱尼·拉尼根;塞缪尔·勒鲁什;布鲁诺·莱昂内;克里斯托夫·勒庞西·拉菲特;马雷克·莱维奇;巴斯蒂安·莱考夫;阿里·莱泽克;卢卡斯·隆布里瑟; J.路易斯·洛佩兹·冈萨雷斯;埃利亚斯·洛佩兹·阿萨马尔;克里斯蒂安·洛佩斯·蒙哈拉兹;朱塞佩·加埃塔诺·卢西亚诺;马哈茂德;阿扎德·马勒内贾德;马库斯·克鲁兹克;雅克·马托;迪迪埃·马索内特;阿努帕姆·马宗达尔;克里斯托弗·麦凯布;马蒂亚斯·梅斯特;乔纳森菜单;朱塞佩·梅西尼奥;萨尔瓦多·米卡利齐奥;彼得·米林顿;米兰·米洛舍维奇;杰里迈亚·米切尔;马里奥·蒙特罗;加文·W·莫利;尤尔根·穆勒; Özgür E. Müstecapl ioğlu ;倪伟头 ;约翰内斯·诺勒;塞纳德·奥扎克;丹尼尔 KL 爱;亚西尔·奥马尔;朱莉娅·帕尔;肖恩·帕林;索拉布·潘迪;乔治·帕帕斯;维奈·帕里克;伊丽莎白·帕萨坦布;埃马努埃莱·佩鲁基;弗兰克·佩雷拉·多斯桑托斯;巴蒂斯特·皮斯特;伊戈尔·皮科夫斯基;阿波斯托洛斯·皮拉夫齐斯;罗伯特·普朗克特;罗莎·波贾尼;马可·普雷维德利;朱莉娅·普普蒂;维什努普里亚·普蒂亚·维蒂尔;约翰·昆比;约翰·拉菲尔斯基;苏吉特·拉詹德兰;恩斯特·M·拉塞尔;海法 雷杰布·斯法尔 ;塞尔日·雷诺;安德里亚·里查德;坦吉·罗津卡;阿尔伯特·鲁拉;扬·鲁道夫;迪伦·O·萨布尔斯基;玛丽安娜·S·萨夫罗诺娃;路易吉·圣玛丽亚;曼努埃尔·席林;弗拉基米尔·施科尔尼克;沃尔夫冈·P。施莱希;丹尼斯·施利珀特;乌尔里希·施奈德;弗洛里安·施雷克;克里斯蒂安·舒伯特;尼科·施韦森茨;阿列克谢·谢马金;奥尔加·塞尔吉延科;邵丽静;伊恩·希普西;拉吉夫·辛格;奥古斯托·斯梅尔齐;卡洛斯·F·索普尔塔;亚历山德罗·DAM·斯帕利奇;佩特鲁塔·斯特凡内斯库;尼古拉斯·斯特吉乌拉斯;扬尼克·斯特罗勒;克里斯蒂安·斯特鲁克曼;西尔维娅·坦廷多;亨利·斯罗塞尔;古列尔莫·M·蒂诺;乔纳森·廷斯利;奥维迪乌·廷塔雷努·米尔恰;金伯利·特卡尔切克;安德鲁. J.托利;文森扎·托纳托雷;亚历杭德罗·托雷斯-奥胡埃拉;菲利普·特罗伊特兰;安德里亚·特罗姆贝托尼;蔡玉岱;克里斯蒂安·乌弗雷希特;斯特凡·乌尔默;丹尼尔·瓦鲁克;维尔·瓦斯科宁;维罗尼卡·巴斯克斯-阿塞韦斯;尼古拉·V·维塔诺夫;克里斯蒂安·沃格特;沃尔夫·冯·克利青;安德拉斯·武基奇斯;莱因霍尔德·瓦尔泽;王金;尼尔斯·沃伯顿;亚历山大·韦伯-日期;安德烈·温兹劳斯基;迈克尔·维尔纳;贾森·威廉姆斯;帕特里克·温德帕辛格;彼得·沃尔夫;丽莎·沃尔纳;安德烈·雪雷布;穆罕默德·E·叶海亚;伊曼纽尔·赞布里尼·克鲁塞罗;穆斯林扎雷;詹明生;林周;朱尔·祖潘;埃里克·祖帕尼奇
[1] Ryan S. Baker。2024。大数据和教育(第8版)。宾夕法尼亚州费城宾夕法尼亚大学。 [2] Ryan S. Baker和Aaron Hawn。2022。教育算法偏见。国际人工智能杂志教育杂志(2022),1-41。[3] Solon Barocas,Andrew D Selbst和Manish Raghavan。2020。反事实解释和主要原因背后的隐藏假设。在2020年公平,问责制和透明度会议的会议记录中。80–89。[4] Alex J Bowers和Xiaoliang Zhou。2019。曲线下的接收器操作特征(ROC)区域(AUC):一种评估教育结果预测指标准确性的诊断措施。受风险的学生教育杂志(JESPAR)24,1(2019),20-46。[5] Oscar Blessed Deho,Lin Liu,Jiuyong Li,Jixue Liu,Chen Zhan和Srecko Joksimovic。2024。过去!=未来:评估数据集漂移对学习分析模型的公平性的影响。IEEE学习技术交易(2024)。[6] Olga V Demler,Michael J Pencina和Ralph B D'Agostino Sr. 2012。滥用DELONG测试以比较嵌套模型的AUC。医学中的统计数据31,23(2012),2577–2587。[7] Batya Friedman和Helen Nissenbaum。1996。计算机系统中的偏差。信息系统(TOIS)的ACM交易14,3(1996),330–347。[8]乔什·加德纳,克里斯托弗·布鲁克斯和瑞安·贝克。2019。225–234。通过切片分析评估预测学生模型的公平性。在第9届学习分析与知识国际会议论文集。[9]LászlóA Jeni,Jeffrey F Cohn和Fernando de la Torre。2013。面对不平衡的数据:使用性能指标的建议。在2013年,俄亥俄州情感计算和智能互动会议上。IEEE,245–251。 [10] Weijie Jiang和Zachary a Pardos。 2021。 在学生等级预测中迈向公平和算法公平。 在2021年AAAI/ACM关于AI,伦理和社会的会议上。 608–617。 [11]RenéFKizilcec和Hansol Lee。 2022。 教育算法公平。 在教育中人工智能的伦理学中。 Routledge,174–202。 [12]JesúsFSalgado。 2018。 将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。 欧洲心理学杂志适用于法律环境10,1(2018),35-47。 [13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。 2021。 在自动教育论坛帖子中评估算法公平性。 教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。 Springer,381–394。 2024。 2023。 2018。IEEE,245–251。[10] Weijie Jiang和Zachary a Pardos。2021。在学生等级预测中迈向公平和算法公平。在2021年AAAI/ACM关于AI,伦理和社会的会议上。608–617。[11]RenéFKizilcec和Hansol Lee。2022。教育算法公平。在教育中人工智能的伦理学中。Routledge,174–202。[12]JesúsFSalgado。2018。将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。欧洲心理学杂志适用于法律环境10,1(2018),35-47。[13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。2021。在自动教育论坛帖子中评估算法公平性。教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。Springer,381–394。2024。2023。2018。[14]Valdemaršvábensk`Y,MélinaVerger,Maria Mercedes T Rodrigo,Clarence James G Monterozo,Ryan S Baker,Miguel Zenon Nicanor LeriasSaavedra,SébastienLallé和Atsushi Shimada。在预测菲律宾学生的学习成绩的模型中评估算法偏见。在第17届国际教育数据挖掘会议上(EDM 2024)。[15]MélinaVerger,SébastienLallé,FrançoisBouchet和Vanda Luengo。您的模型是“ MADD”吗?一种新型指标,用于评估预测学生模型的算法公平性。在第16届国际教育数据挖掘会议上(EDM 2023)。[16] Sahil Verma和Julia Rubin。公平定义解释了。在国际软件公平研讨会的会议记录中。1-7。[17] Zhen Xu,Joseph Olson,Nicole Pochinki,Zhijian Zheng和Renzhe Yu。2024。上下文很重要,但是如何?课程级别的性能和公平转移的相关性在预测模型转移中。在第14届学习分析和知识会议论文集。713–724。[18] Andres Felipe Zambrano,Jiayi Zhang和Ryan S Baker。2024。在贝叶斯知识追踪和粗心大意探测器上研究算法偏见。在第14届学习分析和知识会议论文集。349–359。
1. Fung, TS; Liu, DX, 人类冠状病毒:宿主-病原体相互作用。2019 年微生物学年鉴,73,529-557。2. 吴灿荣,YY,刘洋,张鹏,王雅莉,王琪琪,徐扬,李明雪,郑梦竹,陈丽霞,李华 弗林,COVID-19 的潜在治疗靶点。2020。3. Walls, AC; Park, YJ; Tortorici, MA; Wall, A.; McGuire, AT; Veesler, D., SARS-CoV-2 刺突糖蛋白的结构、功能和抗原性。Cell 2020。 4. https://covid19.who.int/?gclid=CjwKCAjw8df2BRA3EiwAvfZWaP34yJr8HdK4mBed5dKa2T6fl ZjBA5sFDNCata6LM6-eXa1CmMjHwhoCUZQQAvD_BwE 。 5. 达玛,K.;沙伦,K.;蒂瓦里,R.;达达尔,M.;马利克,YS;辛格,KP; Chaicumpa, W.,COVID-19,一种新出现的冠状病毒感染:设计和开发疫苗、免疫疗法和疗法的进展和前景。人类疫苗免疫疗法 2020,1-7。 6.张L.;林,D。孙,X.;柯斯,美国;德罗斯滕,C.;索尔赫林,L.;贝克尔,S.; Rox, K.; Hilgenfeld, R., SARS-CoV-2 主蛋白酶的晶体结构为设计改进的 α-酮酰胺抑制剂提供了基础。Science 2020, eabb3405。7. Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M., 羟氯喹是氯喹的一种低毒性衍生物,可在体外有效抑制 SARS-CoV-2 感染。Cell Discov 2020, 6, 16。8. Gao, J.; Tian, Z.; Yang, X., 突破:磷酸氯喹在临床研究中显示出对治疗 COVID-19 相关肺炎的明显疗效。Biosci Trends 2020, 14(1), 72-73。9. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G., 瑞德西韦和氯喹在体外有效抑制最近出现的新型冠状病毒 (2019-nCoV)。Cell Res 2020, 30 (3), 269-271。10. Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D., 羟氯喹治疗严重急性呼吸道综合征冠状病毒 2 (SARS-CoV-2) 的体外抗病毒活性和优化剂量设计预测。Clin Infect Dis 2020。 11. Dong, L.;Hu, S.;Gao, J.,发现治疗 2019 年冠状病毒病 (COVID-19) 的药物。药物发现治疗学 2020, 14 (1), 58-60。12. https://khgmstokyonetimidb.saglik.gov.tr/TR,f.-.-m.-t.-.-.-c.-.-s.-c.-e.-t.-k.-i.-i.-bh,土耳其。13. Agostini, ML;Andres, EL;Sims, AC;Graham, RL;Sheahan, TP;Lu, X.;Smith, EC;Case, JB;Feng, JY;Jordan, R.;Ray, AS;Cihlar, T.;Siegel, D.;Mackman, RL;Clarke, MO;Baric, RS; Denison, MR,冠状病毒对抗病毒药物瑞德西韦 (GS-5734) 的敏感性由病毒聚合酶和校对核酸外切酶介导。mBio 2018, 9 (2)。14. Brown, AJ;Won, JJ;Graham, RL;Dinnon, KH,第 3 位;Sims, AC;Feng, JY;Cihlar, T.;Denison, MR;Baric, RS;Sheahan, TP,广谱抗病毒药物瑞德西韦可通过高度发散的 RNA 依赖性 RNA 聚合酶抑制人类地方性和人畜共患的德尔塔冠状病毒。抗病毒研究 2019,169,104541。15. Ko, WC;Rolain, JM;Lee, NY;Chen, PL;Huang, CT;Lee, PI;Hsueh, PR,支持使用瑞德西韦治疗 SARS-CoV-2 感染的论据。国际抗微生物剂杂志 2020,105933。16. Tim Smith, P.,BCPS;Jennifer Bushek,PharmD;Tony Prosser,PharmD,COVID-19 药物治疗——潜在选择。爱思唯尔 2020。17. Chu, CM;Cheng, VC;Hung, IF;Wong, MM;Chan, KH;Chan, KS;Kao, RY; Poon, LL; Wong, CL; Guan, Y.; Peiris, JS; Yuen, KY,洛匹那韦/利托那韦在 SARS 治疗中的作用:初步病毒学和临床发现。Thorax 2004, 59 (3), 252-6。18. Chen, F.; Chan, KH; Jiang, Y.; Kao, RY; Lu, HT; Fan, KW; Cheng, VC; Tsui, WH; Hung, IF; Lee, TS; Guan, Y.; Peiris, JS; Yuen, KY,10 种 SARS 冠状病毒临床分离株对选定的抗病毒化合物的体外敏感性。J Clin Virol 2004, 31 (1), 69-75。
注意:请注意,此文档可能不是记录的版本(即已发布的版本)。作者手稿版本(作为同行评审或同行评审后接受的出版物接受的子手稿版本)可以通过出现出版商品牌和/或排便中的出现来确定。如果有任何疑问,请参考已发布的来源。