专业上皮对于维持循环至关重要,并报告说,上皮中KEAP1的缺失将导致小鼠肾结通(Noel等,2016)。但尚不清楚什么是主要贡献者,不同细胞类型之间的协同相互作用可能对维持肾脏功能至关重要。许多基因涉及维持正常肾功能,例如CLMP和GFRA3。以前的一个在肾脏发育中起重要作用,它的缺失将导致严重的双侧肾积水(Rathjen和Jüttner,2023年)。后者是GDNF家族受体的成员,GDNF是一种分泌的分子,并参与输尿管萌芽(Uetani and Bouchard,2009年)。其他转录因子,例如gata3,lim1,对于肾脏结构也很重要(Chia等,2011)(Boualia等,2013)。小鼠胚胎中GATA3突变会在出生时引起肤色,这表明GATA3因子是尿路突变所必需的(Chia等,2011)。FOXF1是肺发育的另一个因素,也发现突变导致肾结通(BZDęGA等,2023)。通过肾积水中探索了几乎没有潜在的关键基因或转录因子,潜在的遗传机制仍在进一步研究。最近的研究表明,调节元件中染色质状态的变化在基因表达中起着至关重要的作用,并可能导致严重疾病(Mirabella等,2016)(Klemm等,2019)。尽管如此,我们仍然对肤色期间异常组织和正常组织之间染色质状态的改变的了解有限。全面理解肤色中的基因表达和相关调节网络将有助于我们识别发病机理并发现疾病的新疗法靶标。我们试图在这项研究中检测正常和肾脏症之间的差异表达基因(DEG),然后探索疾病的表观遗传变化,包括ATAC-SEQ检测到的DNA甲基化预测和相关的调节元件,检测到了差异性可及的区域(DARS)(图1A)。为了可视化Hub-Gene在肾积水中,我们还通过String构建了蛋白质 - 蛋白质网络(PPI)。为了验证获得的DEGS和DARS之间的潜在关系,我们进一步检测到DEG和DARS之间的染色质结构,试图在肾结通中填充调节机制。
Yuhao Sun(本科@USTC,PhD@thu) - [提交给CVPR'25] 5月。 2024-当前的Hanhui Wang(Master@USC) - [提交给CVPR'25] 5月。 2024-当前的Chongyu粉丝(本科@hust,PhD@msu) - [[ICLR'24 Spotlight] May。 2023-当前的Haomin Zhuang(Phd@Notre Dame) - [[Cvprw'23]],[提交给ICLR'25] 2022年12月 - 当前CAN CAN JIN(Undergraduate@ustc,phd@rutgers)博士@hkust) - [[CVPR'23],[ICLR'24]] 2022年10月 - 2023年10月Mohammad Jafari(Sharif Technology,Sharif Technology) - [ICASSP'24]] 5月。 2023- 2023年10月Yuhao Sun(本科@USTC,PhD@thu) - [提交给CVPR'25] 5月。2024-当前的Hanhui Wang(Master@USC) - [提交给CVPR'25] 5月。2024-当前的Chongyu粉丝(本科@hust,PhD@msu) - [[ICLR'24 Spotlight] May。2023-当前的Haomin Zhuang(Phd@Notre Dame) - [[Cvprw'23]],[提交给ICLR'25] 2022年12月 - 当前CAN CAN JIN(Undergraduate@ustc,phd@rutgers)博士@hkust) - [[CVPR'23],[ICLR'24]] 2022年10月 - 2023年10月Mohammad Jafari(Sharif Technology,Sharif Technology) - [ICASSP'24]] 5月。2023- 2023年10月
5。Yanran Guan,Han Liu,Kun Liu,Kangxue Yin,Ruizhen Hu,Oliver van Kaick,Yan Zhang,Yan Zhang,Ersin Yumer,Nathan Carr,Radomir Mech和Hao Zhang,“成名:FAME:通过功能性模型模型Evolution通过功能性模型Evolution通过功能性生成的3D形状产生。可视化和计算机图形,第1卷。28,编号4,pp。1758-1772,2022。
Zhang, Y., Valsecchi, M., Gegenfurtner, KR, Chen, J. (2023)。拉普拉斯参考是稳态视觉诱发电位的最佳选择。JOURNAL OF NEUROPHYSIOLOGY,130(3),557-568 [10.1152/jn.00469.2022]。
基于脑电图 (EEG) 的脑机接口 (BCI) 允许用户使用脑信号来控制外部仪器,而运动意图检测 BCI 可以帮助失去运动功能的患者康复。现有该领域的研究大多依赖于基于线索的数据收集,这种方法便于样本标记,但会引入来自线索刺激的噪音;此外,它需要大量的用户培训,并且不能反映真实的使用场景。相比之下,自定步调的 BCI 可以通过支持用户按照自己的主动性和步调进行运动来克服基于线索的方法的局限性,但它们在标记方面存在不足。因此,在本研究中,我们提出了一种自动标记方法,可以交叉引用肌电图 (EMG) 信号以进行 EEG 标记,而无需人工干预。此外,考虑到只有少数研究专注于评估用于在线使用的 BCI 系统,并且其中大多数没有报告在线系统的细节,我们开发并详细介绍了一个伪在线评估套件,以促进在线 BCI 研究。我们收集了 10 名参与者的自定步调运动 EEG 数据,这些参与者进行张开和闭合手部动作,以进行训练和评估。结果表明,与基线标记方法相比,自动标记方法可以很好地处理噪声数据。我们还探索了用于在线自定步调运动检测的流行机器学习模型。结果证明了我们的在线管道的能力,并且由于在线 BCI 系统的特定设置,性能良好的离线模型并不一定能转化为性能良好的在线模型。我们提出的自动标记方法、在线评估套件和数据集向现实世界的自定步调 BCI 系统迈出了坚实的一步。© 2023 作者。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
[C2] Jesse Zhang,Jack Sullivan,Vasudev Venkatesh PB,Kyle Tse,Andy Yan,John Leyden,Kalya-Naraman Shankari和Randy H Katz。“ Tripaware:通过移动应用鼓励可持续运输的情感和信息性方法”,第六届ACM节能建筑,城市和运输系统系统会议论文集,2019年
摘要:整数和分数量子厅效应(IQHE和FQHE)从1980年代开始引起了很多关注。通常,FQHE的实现需要一个大的磁场(以20特斯拉的阶段为单位)。理论家提出了FQHE在平坦的Chern频段中没有任何磁场的实现,但在传统的固态系统中显然具有挑战性。在这次演讲中,我将在过去六年中在Moiré材料的新领域中介绍理论和实验性努力,最终实现了这一目标。可以通过简单地将两个二维层(例如石墨烯)换一个小角度来产生moiré超晶格。可以从如此简单的设置中出现诸如量子厅物理等物理学(例如量子霍尔物理学)的相当惊人的相关物理。我将特别强调我们的量子异常晶体晶体理论,以解释MIT的Long Ju's Group在Pentalyer石墨烯中观察到的QHE。
- NSF研究生研究奖学金2020 - 2023 - 2019年春季一般奖学金中的最高区别 - 杰出的研究生讲师奖2019年春季 - 计算机科学系荣誉论文荣誉论文2018年秋季2018年Quantedge Awarde Awarding for Actorical Excellence for Actorical Excellence for for 2017 fall 2017 - ERDS数字:3
我的演讲•第二届ETH-HKG-ICL数学金融研讨会,香港,4月22日至25日,2025年。•ISOR座谈会,维也纳大学,维也纳,奥地利,3月。31,2025。•统计研讨会系列,Collegio Carlo Alberto,意大利,意大利,2月12日至14日,2025年。•建模,学习和理解:金融数学,金融技术与金融经济学之间的现代挑战,班夫,11月10日至15日,2024年。•第12届Bachelier Bachelier Finance Society,Rio de Janeiro,7月8日至12日,2024年。•随机差异游戏中的新趋势和挑战,班夫,6月23日至28日,2024年。•伦敦,伦敦,伦敦,埃德·恩基 - 帝国的数学金融研讨会。•机器学习研讨会的概率,牛津,2024年6月12日。•数学金融研讨会,比勒菲尔德,2024年6月5日。•巴黎,巴黎的单身研讨会,2024年4月17日。•fields-CFI训练营在定量金融中的机器学习,多伦多,4月25日至26日,2024年。•随机控制,机器学习和定量金融的最新进展,上海,2024年4月15日至19日。•IMSI关于决策和不确定性的研讨会,芝加哥,2024年2月2-9日。•2024年1月30日,Cityu-Nus MFG/MFC研讨会。•第16届ERCIM WG关于计算和方法统计的国际会议,柏林,2023年12月16日至18日。•伦敦第七伦敦 - 巴里斯·巴里斯(London-Paris),伦敦,伦敦,9月18日至19日,2023年。•8月28日,第二次HKSIAM双年展会议,香港。 1,2023。•随机分析与数学金融研讨会,柏林,2023年6月22日。•20023年8月27日至30日,香港定量金融的最新进展。•Bielefeld,6月26日至30日,第11届金融会议的高级数学方法。•柏林概率座谈会,柏林,2023年6月21日。•北英国概率研讨会,爱丁堡大学,2023年6月14日。•埃塞克斯大学数据科学研讨会,2023年5月11日。•伦敦帝国学院的PDES机器学习第二届研讨会,4月3-4,2023。•概率研讨会,巴斯大学,2023年1月9日。•世界上关于金融机器学习的世界在线研讨会,虚拟,2022年11月22日。•机器学习和最佳控制,皇家统计学会,虚拟,2022年10月19日。•悉尼大学的金融和随机研讨会,2022年10月11日。•伦敦 - 巴黎班赛车关于数学金融的Bachelier研讨会,法国巴黎,9月15日至16日,2022年。•PDES的机器学习,英国伦敦,9月6日至8日,2022年。
绵羊。 这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。 因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。 除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。 超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。 早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。 然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。 值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。绵羊。这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。例如,已证明在KSOM或CZB培养基中培养小鼠胚胎(250 - 275 MOSM)可以抵御两细胞停滞(Chatot等,1990; Lawitts and Biggers,1991; 1993; 1993; Hadi等,2005)。当受外部条件干扰时,细胞体积控制的迅速恢复是通过Na + /H +交换器NHE1和HCO 3 + /Cl- -Chressanger AE2的激活来介导的,该E2调节Na +和Cl-的细胞内浓度。尽管如此,至关重要的是避免过度高离子浓度,这可能破坏正常的细胞生理和生化过程。Subsequently, preimplantation embryos and oocytes reactivate speci fi c organic osmolyte channels to internalize uncharged osmolytes, replacing inorganic ions and ensuring that cells maintain normal physiological and biochemical processes ( Alper, 2009 ; Donowitz et al., 2013 ; Nakajima et al., 2013 ; Tscherner et al., 2021)。对小鼠卵母细胞中的细胞体积调节机制的研究表明,编码Gly Transporter的SLC6A9的特定缺失消除了植入前胚胎中的GLY转运及其对催眠应激的能力(Tscherner等人,2023)。这些发现强调了对哺乳动物卵母细胞和植入前胚胎的健康发展进行精确细胞体积调节的必要性。gly是蛋白质和核酸合成中必不可少的前体,这对于快速细胞增殖至关重要(Redel等,2016; Alves等,2019)。据报道,Gly是猪卵泡液中最丰富的氨基酸(Hong and Lee,2007),这表明Gly可能是在体外改善卵母细胞成熟的重要因素。虽然精确的机制仍有待完全阐明,但新出现的证据表明,Gly作为牛胚胎和小鼠卵母细胞发展中的有机渗透剂的重要作用(Zhou等,2013; Herrick et al。